当前位置: X-MOL 学术Process Saf. Prog. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Research on deflagration characteristics and thermodynamic mechanism of micron aluminum powders
Process Safety Progress ( IF 1 ) Pub Date : 2021-05-19 , DOI: 10.1002/prs.12262
Ke Yan 1 , Xiangbao Meng 1, 2, 3 , Zheng Wang 1 , Yansong Zhang 1 , Junfeneg Wang 1 , Xuesong Ma 1 , Qin Xiao 1
Affiliation  

Taking three kinds of micron aluminum powder as the research object, taking the deflagration characteristics and dynamic mechanism of aluminum dust as the main line of research, using high-speed camera system and temperature measurement system to study the dust cloud of three kinds of aluminum powder with different concentration in the transparent pipe dust flame The flame shape, propagation speed, and temperature change law of the propagation device, the flame propagation speed and temperature increase with the increase of dust cloud concentration, and decrease with the increase of particle size; through the experiment of 20 L spherical explosive device, the empirical regression equation of maximum explosion pressure Pmax and maximum pressure rise rate (dP/dt)max is obtained, the explosion pressure (Pmax) will first increase and then decrease with the dust concentration, (dP/dt)max increases with the increase of dust concentration, while Pmax and (dP/dt)max increase with the decrease of particle size; The explosion products of aluminum powder were analyzed by XPS and surface energy spectrum, and the main substances of the explosion products were Al2O3, Al(OH)3, and unburned Al, and the deflagration mechanism model of micron aluminum powder was obtained; at the same time, the simultaneous thermal analyzer (TG-DSC) was used to conduct microscopic thermal analysis kinetics experimental research on micron aluminum powder with different particle sizes. The combustion process of aluminum powder in the air was divided into three stages. Fit the curve by analyzing and calculate the reaction kinetic parameters of the aluminum dust combustion process. The smaller the particle size of the micron aluminum powder, the more aluminum particles involved in the oxidation reaction, the more intense the combustion reaction, the faster the flame propagation speed, the greater the height of the flame front, the greater the explosion pressure, the exothermic phenomenon is significant, and the activation energy required for the oxidation reaction to occur is smaller.

中文翻译:

微米铝粉爆燃特性及热力学机理研究

以三种微米级铝粉为研究对象,以铝粉的爆燃特性和动力学机理为主线,利用高速摄像系统和测温系统对三种铝粉的粉尘云进行研究不同浓度的透明管粉尘火焰传播装置的火焰形状、传播速度和温度变化规律,火焰传播速度和温度随着粉尘云浓度的增加而增加,随着粒径的增加而减小;通过对20L球形爆炸装置的试验,得到最大爆炸压力Pmax和最大压力上升率(dP/dt)max的经验回归方程,爆炸压力(Pmax)随着粉尘浓度的增加先增大后减小,(dP/dt)max随着粉尘浓度的增加而增加,而Pmax和(dP/dt)max随着粒径的减小而增加;通过XPS和表面能谱分析铝粉爆炸产物,爆炸产物的主要物质为Al2O3、Al(OH)3和未燃Al,得到微米铝粉爆燃机理模型;同时利用同步热分析仪(TG-DSC)对不同粒径的微米级铝粉进行显微热分析动力学实验研究。铝粉在空气中的燃烧过程分为三个阶段。通过分析计算铝粉燃烧过程的反应动力学参数,拟合曲线。微米级铝粉粒径越小,参与氧化反应的铝颗粒越多,燃烧反应越剧烈,火焰传播速度越快,火焰前沿高度越大,爆炸压力越大,放热现象显着,发生氧化反应所需的活化能较小。
更新日期:2021-05-19
down
wechat
bug