当前位置: X-MOL 学术Rev. Mod. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Circuit quantum electrodynamics
Reviews of Modern Physics ( IF 44.1 ) Pub Date : 2021-05-19 , DOI: 10.1103/revmodphys.93.025005
Alexandre Blais , Arne L. Grimsmo , S. M. Girvin , Andreas Wallraff

Quantum-mechanical effects at the macroscopic level were first explored in Josephson-junction-based superconducting circuits in the 1980s. In recent decades, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors. The realization that superconducting qubits can be made to strongly and controllably interact with microwave photons, the quantized electromagnetic fields stored in superconducting circuits, led to the creation of the field of circuit quantum electrodynamics (QED), the topic of this review. While atomic cavity QED inspired many of the early developments of circuit QED, the latter has now become an independent and thriving field of research in its own right. Circuit QED allows the study and control of light-matter interaction at the quantum level in unprecedented detail. It also plays an essential role in all current approaches to gate-based digital quantum information processing with superconducting circuits. In addition, circuit QED provides a framework for the study of hybrid quantum systems, such as quantum dots, magnons, Rydberg atoms, surface acoustic waves, and mechanical systems interacting with microwave photons. Here the coherent coupling of superconducting qubits to microwave photons in high-quality oscillators focusing on the physics of the Jaynes-Cummings model, its dispersive limit, and the different regimes of light-matter interaction in this system are reviewed. Also discussed is coupling of superconducting circuits to their environment, which is necessary for coherent control and measurements in circuit QED, but which also invariably leads to decoherence. Dispersive qubit readout, a central ingredient in almost all circuit QED experiments, is also described. Following an introduction to these fundamental concepts that are at the heart of circuit QED, important use cases of these ideas in quantum information processing and in quantum optics are discussed. Circuit QED realizes a broad set of concepts that open up new possibilities for the study of quantum physics at the macro scale with superconducting circuits and applications to quantum information science in the widest sense.

中文翻译:

电路量子电动力学

在1980年代,首次在基于约瑟夫逊结的超导电路中探索了宏观一级的量子力学效应。在最近的几十年中,量子信息科学的出现加强了对将这些电路用作量子信息处理器中的量子位的研究。可以使超导量子位与微波光子发生强烈且可控制的相互作用的认识,即超导电路中存储的量化电磁场,导致了电路量子电动力学(QED)领域的建立,这是本综述的主题。尽管原子腔QED激发了电路QED的许多早期发展,但后者现在已成为独立且蓬勃发展的研究领域。电路QED允许以前所未有的细节研究和控制量子级的光-物质相互作用。它在所有目前使用超导电路进行基于门的数字量子信息处理的方法中也起着至关重要的作用。此外,电路QED为研究混合量子系统提供了框架,例如量子点,磁振子,里德堡原子,表面声波以及与微波光子相互作用的机械系统。在此,重点讨论了Jaynes-Cummings模型的物理特性,其色散极限以及该系统中不同的光-物质相互作用机制,从而将超导量子位与微波振荡器中的微波光子进行了相干耦合。还讨论了超导电路与其环境的耦合,这对于电路QED中的相干控制和测量是必不可少的,但也总是导致去相干。还描述了分散的量子位读数,它是几乎所有电路QED实验中的重要组成部分。在介绍了电路QED核心的这些基本概念之后,讨论了这些思想在量子信息处理和量子光学中的重要用例。电路QED实现了一系列广泛的概念,这些概念为超大规模的量子物理学研究提供了新的可能性,超导电路在最广泛的意义上适用于量子信息科学。在介绍了电路QED核心的这些基本概念之后,讨论了这些思想在量子信息处理和量子光学中的重要用例。电路QED实现了一系列广泛的概念,这些概念为超大规模的量子物理学研究提供了新的可能性,超导电路在最广泛的意义上适用于量子信息科学。在介绍了电路QED核心的这些基本概念之后,讨论了这些思想在量子信息处理和量子光学中的重要用例。电路QED实现了一系列广泛的概念,这些概念为超大规模的量子物理学研究提供了新的可能性,超导电路在最广泛的意义上适用于量子信息科学。
更新日期:2021-05-19
down
wechat
bug