当前位置: X-MOL 学术Inorg. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inorganic Materials for Regenerative Medicine
Inorganic Materials ( IF 0.8 ) Pub Date : 2021-05-17 , DOI: 10.1134/s002016852105006x
T. V. Safronova

Abstract

Methods that are used in regenerative medicine rely on the inherent ability of living organisms to regenerate their tissue. If the size (volume) of a defect exceeds some critical level, regeneration can be initiated and maintained using resorbable porous scaffolds made of natural, artificial, or synthetic materials capable of temporary defect compensation. When modified with pharmaceutical products and specific proteins or cells, such porous scaffolds are referred to as tissue engineering constructs. Inorganic resorbable materials are most frequently used for bone tissue defect repair. Natural bone is a composite having a polymer (collagen) matrix filled with calcium phosphate nanocrystals in the form of insoluble calcium hydroxyapatite. For this reason, calcium phosphate-based materials are leaders of medical inorganic materials research. To date, resorbable biocompatible materials based on tricalcium phosphate, calcium pyrophosphate, brushite, monetite, and octacalcium phosphate have been developed. Calcium hydroxyapatite is known as an inorganic ion exchanger. Because of this, the composition of bone tissue includes, in addition to phosphate and calcium ions, carbonate, silicate, and sulfate ions, as well as sodium, potassium, magnesium, iron, strontium, zinc and some other metal ions. The fact that bone tissue contains anions substituting for orthophosphate ions or hydroxide ions in the calcium hydroxyapatite of bone tissue prompted researchers to produce resorbable materials based on calcium sulfates, calcium carbonate, and calcium phosphates in which orthophosphate ions are replaced by anions mentioned above. Cation substitutions in calcium hydroxyapatite of bone tissue and the chemical composition of the medium of an organism allow one to produce and use resorbable materials for bone implants consisting of cation-substituted calcium phosphates and calcium–biocompatible cation double phosphates, such as sodium-substituted tricalcium phosphate, potassium-substituted tricalcium phosphate, sodium rhenanite, potassium rhenanite, and calcium magnesium double pyrophosphate. The resorption of an inorganic material intended for use as a pharmaceutical product can be controlled via designing a preset phase composition. The above-mentioned biocompatible resorbable phases can be used in various combinations in already existing composite materials or composites under development. The microstructure of a biocompatible resorbable inorganic material can be formed as a result of various physicochemical processes. The phase composition and microstructure of a ceramic material are determined by solid-state and liquid-phase sintering processes, as well as by heterogeneous chemical reactions during firing. The phase composition and microstructure of cement stone are formed as a result of chemical binding reactions initiated by the addition of water or aqueous solutions. Amorphous materials can be prepared via melting of starting reagents or sol–gel processing. The osteoconductivity of a biocompatible resorbable inorganic material is an important property necessary for body fluids and bone cells to be able to penetrate into the implant material. Macroporosity, which determines the osteoconductivity of a resorbable inorganic material, can be produced using various technological approaches. 3D printing methods make it possible to obtain materials with tailored phase composition and microstructure and permeable macroporosity of preset architecture. A large surface area of a porous inorganic material is thought to be a factor of controlling the resorption rate. This review summarizes information about existing biocompatible resorbable inorganic materials for regenerative medicine and considers physicochemical principles of the preparation of such materials with the use of synthetic starting powders and natural materials.



中文翻译:

再生医学用无机材料

摘要

再生医学中使用的方法依赖于活生物体再生其组织的固有能力。如果缺陷的大小(体积)超过某个临界水平,则可以使用由能够临时弥补缺陷的天然,人工或合成材料制成的可吸收多孔支架来启动和维持再生。当用药物产品和特定的蛋白质或细胞进行修饰时,这种多孔支架被称为组织工程构建体。无机可吸收材料最常用于骨组织缺损的修复。天然骨是具有聚合物(胶原)基质的复合材料,该基质填充有不溶性羟基磷灰石钙形式的磷酸钙纳米晶体。因此,磷酸钙基材料是医学无机材料研究的领导者。迄今为止,已经开发出了基于磷酸三钙,焦磷酸钙,透钙磷石,褐铁矿和磷酸八钙的可吸收生物相容性材料。羟基磷灰石钙被称为无机离子交换剂。因此,除了磷酸盐和钙离子外,骨组织的成分还包括碳酸盐,硅酸盐和硫酸根离子,以及钠,钾,镁,铁,锶,锌和一些其他金属离子。骨骼组织在骨骼组织的羟基磷灰石钙中含有取代正磷酸根离子或氢氧根离子的阴离子这一事实促使研究人员生产出基于硫酸钙,碳酸钙和磷酸钙的可吸收材料,其中正磷酸根离子被上述阴离子替代。骨组织中羟基磷灰石钙的阳离子取代和生物体介质的化学组成使人们可以生产和使用可吸收材料,用于由阳离子取代的磷酸钙和钙-生物相容性阳离子双磷酸酯组成的骨植入物,例如钠取代的三钙磷酸,钾取代的磷酸三钙,菱锰矿钠,菱锰矿钾和钙镁双焦磷酸盐。可以通过设计预设的相组成来控制打算用作药物产品的无机材料的吸收。上述生物相容性可吸收相可以以多种组合用于已经存在的复合材料或正在开发的复合材料中。由于各种物理化学过程,可以形成生物相容性可吸收无机材料的微观结构。陶瓷材料的相组成和微观结构由固态和液相烧结过程以及烧结过程中的异质化学反应决定。水泥石的相组成和微观结构是由于加入水或水溶液而引发的化学键合反应的结果。非晶态材料可以通过熔化起始试剂或溶胶-凝胶工艺来制备。生物相容性可吸收无机材料的骨传导性是体液和骨细胞能够渗透到植入材料中所必需的重要性能。大孔隙度 可以使用各种技术方法来确定可吸收无机材料的骨传导性。3D打印方法使获得具有特定结构的相组成,微结构和可渗透的大孔结构的材料成为可能。多孔无机材料的大表面积被认为是控制吸收速率的因素。这篇综述总结了有关现有的用于再生医学的生物相容性可吸收无机材料的信息,并考虑了使用合成原料粉和天然材料制备此类材料的物理化学原理。3D打印方法使获得具有特定结构的相组成,微结构和可渗透的大孔结构的材料成为可能。多孔无机材料的大表面积被认为是控制吸收速率的因素。这篇综述总结了有关现有的用于再生医学的生物相容性可吸收无机材料的信息,并考虑了使用合成原料粉和天然材料制备此类材料的物理化学原理。3D打印方法使获得具有特定结构的相组成,微结构和可渗透的大孔结构的材料成为可能。多孔无机材料的大表面积被认为是控制吸收速率的因素。这篇综述总结了有关现有的用于再生医学的生物相容性可吸收无机材料的信息,并考虑了使用合成原料粉和天然材料制备此类材料的物理化学原理。

更新日期:2021-05-18
down
wechat
bug