当前位置: X-MOL 学术Mater. Today Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supervariate ceramics: biomineralization mechanism
Materials Today Advances ( IF 10 ) Pub Date : 2021-05-18 , DOI: 10.1016/j.mtadv.2021.100144
Guobin Zhang , Peng Du , Jing Zhong , Yan Bao , Zhengtao Xu , Jian Lu , Yang Yang Li

Ceramics are key components of life, forming elaborate and diverse structures found in coccolith, shells, skeletons, and teeth. In materials research, however, one generally finds ceramics difficult to process because of their high hardness and melting points. How organisms effortlessly build stunning ceramic architectures, in water and at mild temperature, remains a long-standing mystery to scientists. This study discloses that biomineralization likely operates through a supervariate mechanism based on multi-ionic solutions, a mechanism that enables convenient phase and kinetic regulation through stress control. Specifically, from solutions of multiple ionic components, bioceramics with highly variable (supervariate) compositions are first produced in a gelatinous state of exceptional stability, which offers convenience in material storage, transportation, molding, and processing. Counter-intuitively, the supervariate wet gels can be solidified by simply compacting them under a mild force, whereas the formulas (e.g. carbonates or phosphates), hydration levels, and phases (amorphous or crystalline) of the resultant bioceramics can be tailored. Furthermore, we propose that the biogenic amorphous minerals (e.g. amorphous calcium carbonate) are very likely stabilized by constricting their volume at the microscale, so that they are prohibited from undergoing the prerequisite dehydration step (which requires extra volume) preceding crystallization. The new biomineralization mechanism described here answers a pivotal question on bioceramics of life.



中文翻译:

超变陶瓷:生物矿化机制

陶瓷是生命的关键组成部分,在球石、贝壳、骨骼和牙齿中形成了复杂多样的结构。然而,在材料研究中,人们通常发现陶瓷由于其高硬度和高熔点而难以加工。生物如何在水中和温和的温度下毫不费力地建造令人惊叹的陶瓷建筑,这对科学家来说仍然是一个长期存在的谜。这项研究表明,生物矿化可能通过基于多离子溶液的超变量机制进行,这种机制可以通过应力控制实现方便的相和动力学调节。具体而言,从多种离子组分的溶液中,首先以具有异常稳定性的凝胶状状态生产具有高度可变(超变)成分的生物陶瓷,这为材料储存提供了便利,运输、成型和加工。与直觉相反,超变湿凝胶可以通过在温和的力下简单地压实它们而固化,而所得生物陶瓷的配方(例如碳酸盐或磷酸盐)、水合水平和相(无定形或结晶)可以定制。此外,我们提出生物源无定形矿物(例如无定形碳酸钙)很可能通过在微观尺度上收缩它们的体积来稳定,从而禁止它们在结晶之前进行必要的脱水步骤(需要额外的体积)。此处描述的新生物矿化机制回答了有关生命生物陶瓷的关键问题。超变湿凝胶可以通过在温和的力下简单地压实它们而固化,而所得生物陶瓷的配方(例如碳酸盐或磷酸盐)、水合水平和相(无定形或结晶)可以定制。此外,我们提出生物源无定形矿物(例如无定形碳酸钙)很可能通过在微观尺度上收缩它们的体积来稳定,从而禁止它们在结晶之前进行必要的脱水步骤(需要额外的体积)。此处描述的新生物矿化机制回答了有关生命生物陶瓷的关键问题。超变湿凝胶可以通过在温和的力下简单地压实它们而固化,而所得生物陶瓷的配方(例如碳酸盐或磷酸盐)、水合水平和相(无定形或结晶)可以定制。此外,我们提出生物源无定形矿物(例如无定形碳酸钙)很可能通过在微观尺度上收缩它们的体积来稳定,从而禁止它们在结晶之前进行必要的脱水步骤(需要额外的体积)。这里描述的新生物矿化机制回答了一个关于生命生物陶瓷的关键问题。我们建议生物源无定形矿物(例如无定形碳酸钙)很可能通过在微观尺度上收缩它们的体积来稳定,这样它们就被禁止在结晶之前进行必要的脱水步骤(这需要额外的体积)。此处描述的新生物矿化机制回答了有关生命生物陶瓷的关键问题。我们建议生物源无定形矿物(例如无定形碳酸钙)很可能通过在微观尺度上收缩它们的体积来稳定,这样它们就被禁止在结晶之前进行必要的脱水步骤(这需要额外的体积)。此处描述的新生物矿化机制回答了有关生命生物陶瓷的关键问题。

更新日期:2021-06-08
down
wechat
bug