当前位置: X-MOL 学术Circuits Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Novel ASIC-Based Variable Latency Speculative Parallel Prefix Adder for Image Processing Application
Circuits, Systems, and Signal Processing ( IF 2.3 ) Pub Date : 2021-05-17 , DOI: 10.1007/s00034-021-01741-6
Garima Thakur , Harsh Sohal , Shruti Jain

Approximate computing is gaining grip as a computing paradigm for computer vision, data analytics, and image/signal processing applications. In the era of real-time applications, approximate computing plays a significant role. In many computers including digital signal processors (DSP) and a microprocessor, adders are the main element for the implementation of signal processing applications and digital circuit design. The major problem for addition is the propagation delay in the carry chain. As the bit length of the input operand increases, the length of the carry chain increases. To address the carry propagation problem in digital systems, the most efficient adder architectures for VLSI implementation are classified as a parallel prefix adder (PPA) structure. In this paper, a novel methodology to implement and synthesize different adders (non-speculative and speculative) for any ASIC-based system is proposed. The proposed hybrid Han-Carlson and Kogge-stone speculative adders show improved performance (low power and delay) over the state-of-the-art approximate adders. If the approximation fails, then the proposed efficient error correction technique is activated. The proposed speculative H_C adder results in a 23.79% speed improvement over the proposed K_S adder, and 23.86% of energy is saved. The proposed architectures were synthesized for an operand bit length of 16 bits. Finally, the proposed adder is validated for an error-tolerant image processing application resulting in 41.2 dB PSNR.



中文翻译:

一种基于ASIC的新型可变时延推测并行前缀加法器在图像处理中的应用

近似计算作为计算机视觉,数据分析和图像/信号处理应用程序的一种计算范式正逐渐受到人们的关注。在实时应用时代,近似计算起着重要作用。在包括数字信号处理器(DSP)和微处理器的许多计算机中,加法器是实现信号处理应用程序和数字电路设计的主要元素。加法的主要问题是进位链中的传播延迟。随着输入操作数的位长度增加,进位链的长度也增加。为了解决数字系统中的进位传播问题,用于VLSI实现的最有效的加法器体系结构被归类为并行前缀加法器(PPA)结构。在本文中,提出了一种新颖的方法来实现和综合任何基于ASIC的系统的不同加法器(非推测性和推测性)。提议的混合式Han-Carlson和Kogge-stone投机性加法器显示出比最新的近似加法器更高的性能(低功耗和延迟)。如果逼近失败,则激活所提出的有效纠错技术。提出的推测性H_C加法器比提出的K_S加法器提高了23.79%的速度,并节省了23.86%的能量。所提出的体系结构是针对16位操作数位长度而合成的。最后,对所提出的加法器进行了验证,以用于产生41.2 dB PSNR的容错图像处理应用。提议的混合式Han-Carlson和Kogge-stone投机性加法器显示出比最新的近似加法器更高的性能(低功耗和延迟)。如果逼近失败,则激活所提出的有效纠错技术。提出的推测性H_C加法器比提出的K_S加法器提高了23.79%的速度,并节省了23.86%的能量。所提出的体系结构是针对16位操作数位长度而合成的。最后,对所提出的加法器进行了验证,以用于产生41.2 dB PSNR的容错图像处理应用。提议的混合式Han-Carlson和Kogge-stone投机性加法器显示出比最新的近似加法器更高的性能(低功耗和延迟)。如果逼近失败,则激活所提出的有效纠错技术。提出的推测性H_C加法器比提出的K_S加法器提高了23.79%的速度,并节省了23.86%的能量。所提出的体系结构是针对16位操作数位长度而合成的。最后,对所提出的加法器进行了验证,以用于产生41.2 dB PSNR的容错图像处理应用。与建议的K_S加法器相比,速度提高了79%,并节省了23.86%的能量。所提出的体系结构是针对16位操作数位长度而合成的。最后,对所提出的加法器进行了验证,以用于产生41.2 dB PSNR的容错图像处理应用。与建议的K_S加法器相比,速度提高了79%,并节省了23.86%的能量。所提出的体系结构是针对16位操作数位长度而合成的。最后,对所提出的加法器进行了验证,以用于产生41.2 dB PSNR的容错图像处理应用。

更新日期:2021-05-18
down
wechat
bug