当前位置: X-MOL 学术J. Appl. Clin. Med. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Physical and biological beam modeling for carbon beam scanning at Osaka Heavy Ion Therapy Center
Journal of Applied Clinical Medical Physics ( IF 2.1 ) Pub Date : 2021-05-16 , DOI: 10.1002/acm2.13262
Shinichiro Fujitaka 1 , Yusuke Fujii 1 , Hideaki Nihongi 2 , Satoshi Nakayama 2 , Masaaki Takashina 3 , Noriaki Hamatani 3 , Toshiro Tsubouchi 3 , Masashi Yagi 4 , Kazumasa Minami 5 , Kazuhiko Ogawa 5 , Junetsu Mizoe 3 , Tatsuaki Kanai 3
Affiliation  

We have developed physical and biological beam modeling for carbon scanning therapy at the Osaka Heavy Ion Therapy Center (Osaka HIMAK). Carbon beam scanning irradiation is based on continuous carbon beam scanning, which adopts hybrid energy changes using both accelerator energy changes and binary range shifters in the nozzles. The physical dose calculation is based on a triple Gaussian pencil-beam algorithm, and we thus developed a beam modeling method using dose measurements and Monte Carlo simulation for the triple Gaussian. We exploited a biological model based on a conventional linear-quadratic (LQ) model and the photon equivalent dose, without considering the dose dependency of the relative biological effectiveness (RBE), to fully comply with the carbon passive dose distribution using a ridge filter. We extended a passive ridge-filter design method, in which carbon and helium LQ parameters are applied to carbon and fragment isotopes, respectively, to carbon scanning treatment. We then obtained radiation quality data, such as the linear energy transfer (LET) and LQ parameters, by Monte Carlo simulation. The physical dose was verified to agree with measurements to within ±2% for various patterns of volume irradiation. Furthermore, the RBE in the middle of a spread-out Bragg peak (SOBP) reproduced that from passive dose distribution results to within ±1.5%. The developed carbon beam modeling and dose calculation program was successfully applied in clinical use at Osaka HIMAK.

中文翻译:

大阪重离子治疗中心碳束扫描的物理和生物束建模

我们在大阪重离子治疗中心 (Osaka HIMAK) 开发了用于碳扫描治疗的物理和生物束模型。碳束扫描辐照基于连续碳束扫描,采用混合能量变化,同时使用加速器能量变化和喷嘴中的二元范围移位器。物理剂量计算基于三重高斯笔形光束算法,因此我们开发了一种使用剂量测量和三重高斯蒙特卡罗模拟的光束建模方法。我们利用基于传统线性二次 (LQ) 模型和光子等效剂量的生物模型,而不考虑相对生物有效性 (RBE) 的剂量依赖性,以完全符合使用脊滤波器的碳被动剂量分布。我们扩展了一种被动脊过滤器设计方法,其中碳和氦 LQ 参数分别应用于碳和碎片同位素,以进行碳扫描处理。然后,我们通过蒙特卡罗模拟获得了辐射质量数据,例如线性能量转移 (LET) 和 LQ 参数。对于各种体积照射模式,物理剂量经验证与测量值一致,误差在 ±2% 以内。此外,散布布拉格峰 (SOBP) 中间的 RBE 将被动剂量分布结果复制到 ±1.5% 以内。开发的碳束建模和剂量计算程序已成功应用于大阪 HIMAK 的临床应用。然后,我们通过蒙特卡罗模拟获得了辐射质量数据,例如线性能量转移 (LET) 和 LQ 参数。对于各种体积照射模式,物理剂量经验证与测量值一致,误差在 ±2% 以内。此外,散布布拉格峰 (SOBP) 中间的 RBE 将被动剂量分布结果复制到 ±1.5% 以内。开发的碳束建模和剂量计算程序已成功应用于大阪 HIMAK 的临床应用。然后,我们通过蒙特卡罗模拟获得了辐射质量数据,例如线性能量转移 (LET) 和 LQ 参数。对于各种体积照射模式,物理剂量经验证与测量值一致,误差在 ±2% 以内。此外,散布布拉格峰 (SOBP) 中间的 RBE 将被动剂量分布结果复制到 ±1.5% 以内。开发的碳束建模和剂量计算程序已成功应用于大阪 HIMAK 的临床应用。
更新日期:2021-07-21
down
wechat
bug