当前位置: X-MOL 学术Fash. Text. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D-printed thermoplastic polyurethane for wearable breast hyperthermia
Fashion and Textiles ( IF 2.4 ) Pub Date : 2021-05-15 , DOI: 10.1186/s40691-021-00248-7
Yusuke Mukai , Sixian Li , Minyoung Suh

Microwave breast hyperthermia is a class of cancer treatment, where breast temperature is elevated by a focused electromagnetic (EM) radiation to impair cancer cells. While the current mainstream in microwave breast hyperthermia is centered on bulky and rigid systems, wearable antennas would offer considerable benefits such as superior conformity to individual patient anatomy and better comfort. In this proposition, this paper presents 3D-printed flexible antenna prototypes for wearable breast hyperthermia applications. Since the dielectric properties are expected to dominate the antenna gain but could be influenced by the solid volume percentage, this work first investigates the relationship between the dielectric properties and solid volume percentage of a 3D-printed flexible filament. From this, it is found that with decrease in the solid volume percentage, the dielectric constant decreases following the classic theory of dielectric mixture. Based on this observation, optimal antennas are designed for substrates in different infill levels by running a 3D full-wave EM simulator and fabricated by 3D printing a polyurethane filament. Temperature elevations in a synthetic breast tissue are measured by a thermometer and are ~ 5.5 °C and ~ 3.2 °C at the 5 mm- and 7 mm-deep locations, respectively. The infill percentage makes little difference in the heating efficacy. Based on these findings, this translational study sheds light on the possibility of wearable breast hyperthermia with the 3D-printed flexible and conformal antennas.

中文翻译:

3D打印的热塑性聚氨酯,可穿戴式乳房热疗

微波乳房高温疗法是一类癌症治疗,其中通过聚焦的电磁(EM)辐射升高乳房温度以损害癌细胞。虽然当前微波乳房热疗的主流集中在笨重和刚性的系统上,但可穿戴天线将提供可观的好处,例如对每个患者的解剖结构都具有出色的顺应性和更好的舒适性。在这一命题中,本文提出了可穿戴式乳房热疗应用的3D打印柔性天线原型。由于介电性能预计会主导天线增益,但可能会受到固体体积百分比的影响,因此,这项工作首先研究了3D打印的柔性细丝的介电性能与固体体积百分比之间的关系。由此,发现随着固体体积百分比的降低,介电常数按照经典的介电混合物理论下降。基于此观察结果,通过运行3D全波EM模拟器,并通过3D打印聚氨酯细丝,可以为不同填充水平的基材设计最佳天线。合成乳腺组织中的温度升高通过温度计测量,在5毫米深和7毫米深的位置分别为〜5.5°C和〜3.2°C。填充百分比对加热效率影响不大。基于这些发现,这项转化研究为3D打印的柔性和保形天线可穿戴式乳房热疗的可能性提供了线索。基于此观察结果,通过运行3D全波EM模拟器,并通过3D打印聚氨酯细丝,可以为不同填充水平的基材设计最佳天线。合成乳腺组织中的温度升高通过温度计测量,在5毫米深和7毫米深的位置分别为〜5.5°C和〜3.2°C。填充百分比对加热效率影响不大。基于这些发现,这项转化研究为3D打印的柔性和保形天线可穿戴式乳房热疗的可能性提供了线索。基于此观察结果,通过运行3D全波EM模拟器,并通过3D打印聚氨酯细丝,可以为不同填充水平的基材设计最佳天线。合成乳腺组织中的温度升高通过温度计测量,在5毫米深和7毫米深的位置分别为〜5.5°C和〜3.2°C。填充百分比对加热效率影响不大。基于这些发现,这项转化研究为3D打印的柔性和保形天线可穿戴式乳房热疗的可能性提供了线索。合成乳腺组织中的温度升高通过温度计测量,在5毫米深和7毫米深的位置分别为〜5.5°C和〜3.2°C。填充百分比对加热效率影响不大。基于这些发现,这项转化研究为3D打印的柔性和保形天线可穿戴式乳房热疗的可能性提供了线索。合成乳腺组织中的温度升高通过温度计测量,在5毫米深和7毫米深的位置分别为〜5.5°C和〜3.2°C。填充百分比对加热效率影响不大。基于这些发现,这项转化研究为3D打印的柔性和保形天线可穿戴式乳房热疗的可能性提供了线索。
更新日期:2021-05-15
down
wechat
bug