当前位置: X-MOL 学术Acc. Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Powder Deposition Systems Used in Powder Bed-Based Multimetal Additive Manufacturing
Accounts of Materials Research ( IF 14.6 ) Pub Date : 2021-05-14 , DOI: 10.1021/accountsmr.1c00030
Bram Neirinck 1 , Xiaoshuang Li 1 , Matthias Hick 1
Affiliation  

Made available for a limited time for personal research and study only License. Figure 1. NiTi-Ti6Al4 V multimaterial structures obtained by sequential recoating. Reproduced with permission from ref (2). Copyright 2020 Elsevier. Figure 2. (a) Schematic of the dual recoater build chamber developed at Aalen university and (b) an optical image of the microstructure of a soft magnetic steel-copper laminate produced using this setup. Reproduced with permission from ref (3). Copyright 2019 Elsevier. Figure 3. Schematic of the split recoater developed at NTU and used on a SLM Solutions printer. Reproduced with permission from ref (4). Copyright 2014 NTU. Figure 4. Dual powder reservoirs with powder mixing zone used to product graded interfaces in L-PBF. Reproduced with permission from ref (5). Copyright 2017 Elsevier. Figure 5. 3D multimaterial process scheme as proposed by Anstaett and Seidel. Reproduced with permission from ref (6). Copyright 2017 Fraunhofer IGCV. Figure 6. (a) Schematic of the modified SLM Solutions 250HL at IGCV. Reproduced with permission from ref (8). Copyright 2018 Fraunhofer IGCV. (b) A CuCrZr–Maraging steel build using this modified machine. Reproduced with permission from ref (9). Copyright 2018 Fraunhofer IGCV. Figure 7. Schematic of (a) suction addition to the pipet dosing system. Reproduced with permission from ref (15). Copyright 2018 Elsevier. (b) In situ mixing setup enabling FGM powder bed generation using pipet powder dosing. Reproduced with permission from ref (16). Copyright 2020 Elsevier. Figure 8. (a) Schematic representation of the formation of multimetal powder beds using the MPP approach and (b) a practical implementation of the former. Reproduced with permission from ref (20). Copyright 2005 Sintef Industry. Figure 9. (a) Schematic representation of the Aerosint selective powder deposition system. Reproduced with permission from ref (22). Copyright 2018 Aerosint. (b) Picture of the Aconity3D midi+ modular L-PBF platform for which this selective deposition system can be ordered as an option.(25) Reproduced with permission from ref (25). Copyright 2020 Aconity 3D GmbH. The authors declare no competing financial interest. The authors declare no competing financial interest.
This article references 29 other publications.


中文翻译:

用于基于粉末床的多金属增材制造的粉末沉积系统

限时提供个人研究和学习许可。图 1. 通过连续重涂获得的 NiTi-Ti6Al4 V 多材料结构。经参考文献 (2) 许可转载。版权所有 2020 爱思唯尔。图 2. (a) Aalen 大学开发的双涂覆机构建室示意图和 (b) 使用此设置生产的软磁钢-铜层压板微观结构的光学图像。经参考文献 (3) 许可转载。版权所有 2019 爱思唯尔。图 3. NTU 开发并在 SLM Solutions 打印机上使用的分体式涂布机示意图。经参考文献 (4) 许可转载。版权所有 2014 南大。图 4. 带有粉末混合区的双粉末储存器,用于在 L-PBF 中生成分级界面。经参考文献 (5) 许可转载。版权所有 2017 爱思唯尔。图 5。Anstaett 和 Seidel 提出的 3D 多材料工艺方案。经参考文献 (6) 许可转载。版权所有 2017 弗劳恩霍夫 IGCV。图 6. (a) IGCV 上修改后的 SLM 解决方案 250HL 的示意图。经参考文献 (8) 许可转载。版权所有 2018 弗劳恩霍夫 IGCV。(b) 使用这种改进机器的 CuCrZr-马氏体时效钢构建。经参考文献 (9) 许可转载。版权所有 2018 弗劳恩霍夫 IGCV。图 7. (a) 吸管加药系统的示意图。经参考文献 (15) 许可转载。版权所有 2018 爱思唯尔。(b) 原位混合装置能够使用移液管粉末计量生成 FGM 粉末床。经参考文献 (16) 许可转载。版权所有 2020 爱思唯尔。图 8。(a) 使用 MPP 方法形成多金属粉末床的示意图和 (b) 前者的实际实施。经参考文献 (20) 许可转载。版权所有 2005 Sintef 工业。图 9. (a) Aerosint 选择性粉末沉积系统的示意图。经参考文献 (22) 许可转载。版权所有 2018 Aerosint。(b) Aconity3D midi+ 模块化 L-PBF 平台的图片,该选择性沉积系统可以作为选项订购。(25) 经参考文献 (25) 许可转载。版权所有 2020 Aconity 3D GmbH。作者声明没有竞争性经济利益。作者声明没有竞争性经济利益。(a) Aerosint 选择性粉末沉积系统的示意图。经参考文献 (22) 许可转载。版权所有 2018 Aerosint。(b) Aconity3D midi+ 模块化 L-PBF 平台的图片,该选择性沉积系统可以作为选项订购。(25) 经参考文献 (25) 许可转载。版权所有 2020 Aconity 3D GmbH。作者声明没有竞争性经济利益。作者声明没有竞争性经济利益。(a) Aerosint 选择性粉末沉积系统的示意图。经参考文献 (22) 许可转载。版权所有 2018 Aerosint。(b) Aconity3D midi+ 模块化 L-PBF 平台的图片,该选择性沉积系统可以作为选项订购。(25) 经参考文献 (25) 许可转载。版权所有 2020 Aconity 3D GmbH。作者声明没有竞争性经济利益。作者声明没有竞争性经济利益。
本文引用了 29 篇其他出版物。
更新日期:2021-06-25
down
wechat
bug