当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Motion response characteristics of a Kyushu-University semi-submersible Floating Wind Turbine with trussed slender structures: Experiment vs. numerical simulation
Ocean Engineering ( IF 5 ) Pub Date : 2021-05-14 , DOI: 10.1016/j.oceaneng.2021.109078
Yingyi Liu , Changhong Hu , Makoto Sueyoshi , Shigeo Yoshida , Hidetsugu Iwashita , Masashi Kashiwagi

Understanding the dynamics of an FWT (Floating Wind Turbine) is essential for its design and operation. Since a truss structure can reduce the wave load/resistance on the floating foundation, it becomes more popular in industrial applications. In this regard, knowing the effect of slender members of the truss structure on the motion response characteristics of such an FWT is vital. The present work develops a time-domain method for modeling the dynamics of a floating truss-structure wind turbine with multiple rotors on the deck of the platform. A hybrid panel-stick model is built up incorporating the potential flow theory to calculate the wave inertia force and a Morison strip method to calculate the wave drag force. A systematic methodology, and the corresponding efficient tool, have been developed to deal with the floating trussed structure consisting of a set of slender cylindrical members in arbitrary lengths, diameters, orientations, and locations. The Morison dynamic solver is incorporated into the time-domain solver for the FWT dynamics. The proposed model is validated against a model experiment of a semi-submersible FWT with a triangular-shaped truss-structured platform, which was carried out in RIAM (Research Institute for Applied Mechanics), Kyushu University. Good agreements between the simulation results and the experimental data confirm the validity of the developed method. Further numerical simulations are performed in a set of wind and wave conditions to investigate the effect of wave drag force on the FWT dynamics. It is found that without the fluid viscosity, resonant responses are excited in the platform motions at frequencies that are close to the natural frequencies of the FWT system. Via a comparison between the parked conditions and operating conditions of the FWT, it is found that in the presence of steady wind, the translational surge or sway motion is significantly excited at its resonance frequency. This may be attributed to the work done by the wind to the FWT, which enhances remarkably the total kinetic energy of the platform and consequently increases the translational surge or sway velocity of the platform at the equilibrium position. Applying a hybrid panel-stick model will be effective in reducing all these non-realistic large resonant responses.



中文翻译:

九州大学半潜式浮式风力涡轮机的运动响应特性:实验与数值模拟

了解FWT(浮动风力涡轮机)的动力学特性对于其设计和操作至关重要。由于桁架结构可以减少浮动基础上的波浪载荷/阻力,因此在工业应用中变得越来越流行。在这方面,了解桁架结构的细长构件对这种FWT的运动响应特性的影响至关重要。本工作开发了一种时域方法,用于对平台甲板上具有多个转子的浮动桁架结构风力涡轮机的动力学进行建模。建立了一种混合式面板操纵模型,该模型结合了势流理论来计算波浪惯性力和莫里森带方法来计算波浪阻力。系统的方法论和相应的有效工具,已经开发出用于处理浮动桁架结构的浮式桁架结构,该结构由一组细长的圆柱形构件组成,这些构件的长度,直径,方向和位置均任意。Morison动态求解器已合并到FWT动力学的时域求解器中。该模型是在九州大学RIAM(应用力学研究所)进行的带有三角形桁架结构平台的半潜式FWT模型试验中得到验证的。仿真结果与实验数据之间的良好一致性证实了所开发方法的有效性。在一组风和波浪条件下进行了进一步的数值模拟,以研究波浪拖曳力对FWT动力学的影响。发现没有流体粘度,在平台运动中以接近FWT系统固有频率的频率激发共振响应。通过比较FWT的停放条件和运行条件,发现在稳定风的存在下,平移喘振或摇摆运动在其共振频率处被显着激发。这可能归因于风对FWT所做的功,这显着提高了平台的总动能,并因此增加了平台在平衡位置的平移浪涌或摇摆速度。应用混合面板贴模型将有效地减少所有这些不切实际的大共振响应。通过比较FWT的停放条件和运行条件,发现在稳定风的存在下,平移喘振或摇摆运动在其共振频率处被显着激发。这可能归因于风对FWT所做的功,这显着提高了平台的总动能,并因此增加了平台在平衡位置的平移浪涌或摇摆速度。应用混合面板贴模型将有效地减少所有这些不切实际的大共振响应。通过比较FWT的停放条件和运行条件,发现在稳定风的存在下,平移喘振或摇摆运动在其共振频率处被显着激发。这可能归因于风对FWT所做的功,这显着提高了平台的总动能,并因此增加了平台在平衡位置的平移浪涌或摇摆速度。应用混合面板贴模型将有效地减少所有这些不切实际的大共振响应。这显着提高了平台的总动能,因此增加了平台在平衡位置的平移喘振或摇摆速度。应用混合面板贴模型将有效地减少所有这些不切实际的大共振响应。这显着提高了平台的总动能,因此增加了平台在平衡位置的平移喘振或摇摆速度。应用混合面板贴模型将有效地减少所有这些不切实际的大共振响应。

更新日期:2021-05-14
down
wechat
bug