当前位置: X-MOL 学术Yeast › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Old yeasts, young beer—The industrial relevance of yeast chronological life span
Yeast ( IF 2.6 ) Pub Date : 2021-05-12 , DOI: 10.1002/yea.3650
Ruben Wauters 1, 2 , Scott J Britton 3, 4 , Kevin J Verstrepen 1, 2
Affiliation  

Much like other living organisms, yeast cells have a limited life span, in terms of both the maximal length of time a cell can stay alive (chronological life span) and the maximal number of cell divisions it can undergo (replicative life span). Over the past years, intensive research revealed that the life span of yeast depends on both the genetic background of the cells and environmental factors. Specifically, the presence of stress factors, reactive oxygen species, and the availability of nutrients profoundly impact life span, and signaling cascades involved in the response to these factors, including the target of rapamycin (TOR) and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathways, play a central role. Interestingly, yeast life span also has direct implications for its use in industrial processes. In beer brewing, for example, the inoculation of finished beer with live yeast cells, a process called “bottle conditioning” helps improve the product's shelf life by clearing undesirable carbonyl compounds such as furfural and 2-methylpropanal that cause staling. However, this effect depends on the reductive metabolism of living cells and is thus inherently limited by the cells' chronological life span. Here, we review the mechanisms underlying chronological life span in yeast. We also discuss how this insight connects to industrial observations and ultimately opens new routes towards superior industrial yeasts that can help improve a product's shelf life and thus contribute to a more sustainable industry.

中文翻译:

老酵母,年轻啤酒——酵母按时间顺序寿命的工业相关性

与其他生物体非常相似,酵母细胞的寿命有限,就细胞可以存活的最长时间(按时间顺序排列的寿命)和它可以进行的最大细胞分裂次数(复制寿命)而言。在过去几年中,深入研究表明酵母的寿命取决于细胞的遗传背景和环境因素。具体而言,压力因素、活性氧和营养物质的存在对寿命和响应这些因素的信号级联产生深远影响,包括雷帕霉素 (TOR) 和环磷酸腺苷 (cAMP)/蛋白质的靶标激酶 A (PKA) 通路发挥着核心作用。有趣的是,酵母寿命对其在工业过程中的使用也有直接影响。在啤酒酿造中,例如,用活酵母细胞接种成品啤酒,这一过程被称为“瓶子调理”,通过清除导致陈旧的不受欢迎的羰基化合物,如糠醛和 2-甲基丙醛,有助于延长产品的保质期。然而,这种效果取决于活细胞的还原代谢,因此本质上受到细胞按时间顺序排列的寿命的限制。在这里,我们回顾了酵母中按时间顺序排列的寿命的机制。我们还讨论了这一见解如何与工业观察相联系,并最终开辟了通往卓越工业酵母的新途径,这有助于延长产品的保质期,从而为更可持续的行业做出贡献。通过清除导致陈旧的不受欢迎的羰基化合物(例如糠醛和 2-甲基丙醛)来延长保质期。然而,这种效果取决于活细胞的还原代谢,因此本质上受到细胞按时间顺序排列的寿命的限制。在这里,我们回顾了酵母中按时间顺序排列的寿命的机制。我们还讨论了这一见解如何与工业观察相联系,并最终开辟了通往卓越工业酵母的新途径,这有助于延长产品的保质期,从而为更可持续的行业做出贡献。通过清除导致陈旧的不受欢迎的羰基化合物(例如糠醛和 2-甲基丙醛)来延长保质期。然而,这种效果取决于活细胞的还原代谢,因此本质上受到细胞按时间顺序排列的寿命的限制。在这里,我们回顾了酵母中按时间顺序排列的寿命的机制。我们还讨论了这一见解如何与工业观察相联系,并最终开辟了通往卓越工业酵母的新途径,这有助于延长产品的保质期,从而为更可持续的行业做出贡献。我们回顾了酵母按时间顺序排列的寿命机制。我们还讨论了这一见解如何与工业观察相联系,并最终开辟了通往卓越工业酵母的新途径,这有助于延长产品的保质期,从而为更可持续的行业做出贡献。我们回顾了酵母按时间顺序排列的寿命机制。我们还讨论了这一见解如何与工业观察相联系,并最终开辟了通往卓越工业酵母的新途径,这有助于延长产品的保质期,从而为更可持续的行业做出贡献。
更新日期:2021-06-02
down
wechat
bug