当前位置: X-MOL 学术Mineral. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ trace elements and S isotope systematics for growth zoning in sphalerite from MVT deposits: A case study of Nayongzhi, South China
Mineralogical Magazine ( IF 2.7 ) Pub Date : 2021-03-26 , DOI: 10.1180/mgm.2021.29
Chen Wei , Lin Ye , Zhilong Huang , Yusi Hu , Haoyu Wang

Zoning texture in sphalerite has been described in many studies, although its genesis and ore formation process are poorly constrained. In this investigation, we compare the in situ trace element and isotopic composition of colour-zoned sphalerites from Nayongzhi, South China, to explain the zoning growth process. Petrographic observations identified two broad types of zoned sphalerite, core–rim (CR) and core–mantle–rim (CMR) textures. Each zoned sphalerite displays two or three colour zones, including brown core, light colour bands and/or pale-yellow zones. In situ laser ablation inductively coupled plasma mass spectrometry trace-element analyses show that the three colour zones display variable trace-element compositions. Brown cores exhibit distinctly high Mn, Fe, Co, Ge, Tl and Pb concentrations, whereas pale-yellow and light colour zones have elevated Ga, Cd, Sn, In and Sb concentrations. Copper, Sb, In and Sn show slight variations between pale-yellow and light zones, the latter having higher In and Sn, but lower Cu and Sb abundances. Given the low concentration range of Pb, Ge, Tl, Mn Sb, Cd, etc., the colour of sphalerite is attributed mainly to Fe compositional variation. The δ34S values of sphalerite from Nayongzhi range from +22.3 to +27.9‰, suggesting reduced sulfur was generated by thermochemical sulfate reduction of marine sulfate in ore-hosted strata. Single-crystal colour-zoned sphalerite exhibits intracrystalline δ34S variation (up to 4.3‰), which is attributed to the δ34S composition of H2S in the original fluid. The lack of correlation between trace elements and δ34S values indicates episodic ore solution influxes and mixes with the reduced sulfur-rich fluid derived from the aquifers of the ore-hosted strata, which play a key role in the formation of the zoned Nayongzhi sphalerite. In conclusion, in situ trace element and S isotope studies of zoned sphalerite crystals might provide insight into the ore-forming process of MVT deposits.



中文翻译:

MVT矿床闪锌矿生长区带的原位微量元素和S同位素系统学——以华南纳雍直为例

许多研究已经描述了闪锌矿的分带结构,但其成因和成矿过程并没有受到很好的限制。在本次调查中,我们比较了华南那永芝彩色分带闪锌矿的原位微量元素和同位素组成,以解释分带生长过程。岩相观察确定了两种广泛类型的分区闪锌矿,核-缘 (CR) 和核-幔-缘 (CMR) 纹理。每个分区闪锌矿显示两个或三个颜色区域,包括棕色核心、浅色带和/或淡黄色区域。就地激光烧蚀电感耦合等离子体质谱微量元素分析表明三个颜色区域显示不同的微量元素组成。棕色核心显示出明显高的 Mn、Fe、Co、Ge、Tl 和 Pb 浓度,而浅黄色和浅色区域具有升高的 Ga、Cd、Sn、In 和 Sb 浓度。铜、Sb、In 和 Sn 在淡黄色和亮区之间显示出轻微的变化,后者具有较高的 In 和 Sn,但较低的 Cu 和 Sb 丰度。鉴于 Pb、Ge、Tl、Mn、Sb、Cd 等的低浓度范围,闪锌矿的颜色主要归因于 Fe 成分的变化。δ 34那雍直闪锌矿的 S 值范围为 +22.3 至 +27.9‰,表明还原硫是由赋矿地层中海相硫酸盐的热化学硫酸盐还原生成的。单晶色带闪锌矿表现出晶内δ 34 S 变化(高达4.3‰),这归因于原始流体中H 2 S的δ 34 S 组成。微量元素与δ 34 S值之间缺乏相关性表明,间歇性矿石溶液流入并与来自赋矿地层含水层的还原富硫流体混合,这在分带纳雍直闪锌矿的形成中起关键作用. 总之,就地 对分带闪锌矿晶体的微量元素和 S 同位素研究可能提供对 MVT 矿床成矿过程的深入了解。

更新日期:2021-03-26
down
wechat
bug