当前位置: X-MOL 学术Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of the Supercapacitive Performance of Cobalt-tin-cyanate Layered Structures through Conversion from 2D Materials to 1D Nanofibers
Applied Sciences ( IF 2.838 ) Pub Date : 2021-05-10 , DOI: 10.3390/app11094289
Osama Saber , Sajid Ali Ansari , Abdullah Aljaafari

Rational design of the micro-nanomorphology is highly desired for metal hydroxides to achieve overall high-performance electrodes for supercapacitor and energy storage applications. Here, in the current study, we have succeeded in controlling the morphology of Sn/Co nanolayered structures to obtain plate and nanofibrous morphologies. Additionally, the plate nanostructures could be transformed to obtain plate-nanofibrous morphologies. In this trend, dual anions such as cyanate and nitrate are applied to intercalate among the nanolayers of cobalt-tin and act as building blocks or pillars, producing a series of nanolayered structures. By repulsion forces among the intercalated anions, the nanolayers of Sn/Co are curled and converted to nanofibers. This conversion was confirmed by scanning electron microscopy. In addition, the intercalation reactions and nanolayered structures were indicated by X-ray diffraction, thermal analyses and Fourier-transform infrared spectroscopy. The electrochemical supercapacitive behavior of the different nanostructures of Sn/Co HDS and Sn/Co LDH, such as plate, Plate-nanofiber and nanofibrous morphology has been investigated in three assembly electrode system. The results suggested that the nanofiber morphology of Sn/Co LDH exhibited better specific capacitance performance than the other two morphologies. The enhanced specific capacitance (658 Fg−1) and excellent cyclic stability (89%) of the nanofibers of the Sn/Co LDH could be attributed to the synergistic effects between the electric double layer capacitive character of the tin and the pseudocapacitance nature of the cobalt.

中文翻译:

通过从2D材料转换为1D纳米纤维增强钴酸锡锡层状结构的超电容性能

对于金属氢氧化物,为实现超级电容器和储能应用的整体高性能电极,非常需要对微纳米形态进行合理的设计。在这里,在当前的研究中,我们已经成功地控制了Sn / Co纳米层结构的形态以获得板状和纳米纤维形态。另外,可以将板纳米结构转变以获得板-纳米纤维形态。在这种趋势下,将双阴离子(如氰酸盐和硝酸盐)应用于钴-锡纳米层之间的插层,并充当构建基块或支柱,从而产生一系列纳米层结构。通过插入阴离子之间的排斥力,Sn / Co纳米层会卷曲并转化为纳米纤维。通过扫描电子显微镜确认该转化。此外,X射线衍射,热分析和傅里叶变换红外光谱表明了插层反应和纳米结构。在三个组件电极系统中,研究了Sn / Co HDS和Sn / Co LDH不同纳米结构的电化学超级电容行为,例如板,板-纳米纤维和纳米纤维形态。结果表明,Sn / Co LDH的纳米纤维形态比其他两种形态表现出更好的比电容性能。增强的比电容(658 Fg 板-纳米纤维和纳米纤维的形态已经在三种组装电极系统中进行了研究。结果表明,Sn / Co LDH的纳米纤维形态比其他两种形态表现出更好的比电容性能。增强的比电容(658 Fg 板-纳米纤维和纳米纤维的形态已经在三种组装电极系统中进行了研究。结果表明,Sn / Co LDH的纳米纤维形态比其他两种形态表现出更好的比电容性能。增强的比电容(658 Fg-1)和Sn / Co LDH纳米纤维的优异循环稳定性(89%)可以归因于锡的双电层电容特性与钴的伪电容性质之间的协同效应。
更新日期:2021-05-10
down
wechat
bug