当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy
Nature Communications ( IF 16.6 ) Pub Date : 2021-05-10 , DOI: 10.1038/s41467-021-22718-8
Nino F. Läubli , Jan T. Burri , Julian Marquard , Hannes Vogler , Gabriella Mosca , Nadia Vertti-Quintero , Naveen Shamsudhin , Andrew deMello , Ueli Grossniklaus , Daniel Ahmed , Bradley J. Nelson

Quantitative micromechanical characterization of single cells and multicellular tissues or organisms is of fundamental importance to the study of cellular growth, morphogenesis, and cell-cell interactions. However, due to limited manipulation capabilities at the microscale, systems used for mechanical characterizations struggle to provide complete three-dimensional coverage of individual specimens. Here, we combine an acoustically driven manipulation device with a micro-force sensor to freely rotate biological samples and quantify mechanical properties at multiple regions of interest within a specimen. The versatility of this tool is demonstrated through the analysis of single Lilium longiflorum pollen grains, in combination with numerical simulations, and individual Caenorhabditis elegans nematodes. It reveals local variations in apparent stiffness for single specimens, providing previously inaccessible information and datasets on mechanical properties that serve as the basis for biophysical modelling and allow deeper insights into the biomechanics of these living systems.



中文翻译:

使用声处理和力显微镜对单个细胞和小型生物体进行3D机械表征

单细胞和多细胞组织或生物体的定量微机械表征对于研究细胞生长,形态发生和细胞间相互作用至关重要。但是,由于在微尺度上的操纵能力有限,用于机械表征的系统难以提供单个样本的完整三维覆盖范围。在这里,我们将声学驱动的操纵装置与微力传感器结合使用,以自由旋转生物样本并量化样本内多个目标区域的机械性能。通过分析单个百合花粉花粉粒,结合数值模拟和单个秀丽隐杆线虫,证明了该工具的多功能性。线虫。它揭示了单个标本的表观刚度的局部变化,提供了以前无法获得的有关机械性能的信息和数据集,这些信息和数据集可作为生物物理建模的基础,并可以更深入地了解这些生物系统的生物力学。

更新日期:2021-05-10
down
wechat
bug