当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice
Nature Communications ( IF 16.6 ) Pub Date : 2021-05-10 , DOI: 10.1038/s41467-021-22822-9
Hans I-Chen Harn , Sheng-Pei Wang , Yung-Chih Lai , Ben Van Handel , Ya-Chen Liang , Stephanie Tsai , Ina Maria Schiessl , Arijita Sarkar , Haibin Xi , Michael Hughes , Stefan Kaemmer , Ming-Jer Tang , Janos Peti-Peterdi , April D. Pyle , Thomas E. Woolley , Denis Evseenko , Ting-Xin Jiang , Cheng-Ming Chuong

Tissue regeneration is a process that recapitulates and restores organ structure and function. Although previous studies have demonstrated wound-induced hair neogenesis (WIHN) in laboratory mice (Mus), the regeneration is limited to the center of the wound unlike those observed in African spiny (Acomys) mice. Tissue mechanics have been implicated as an integral part of tissue morphogenesis. Here, we use the WIHN model to investigate the mechanical and molecular responses of laboratory and African spiny mice, and report these models demonstrate opposing trends in spatiotemporal morphogenetic field formation with association to wound stiffness landscapes. Transcriptome analysis and K14-Cre-Twist1 transgenic mice show the Twist1 pathway acts as a mediator for both epidermal-dermal interactions and a competence factor for periodic patterning, differing from those used in development. We propose a Turing model based on tissue stiffness that supports a two-scale tissue mechanics process: (1) establishing a morphogenetic field within the wound bed (mm scale) and (2) symmetry breaking of the epidermis and forming periodically arranged hair primordia within the morphogenetic field (μm scale). Thus, we delineate distinct chemo-mechanical events in building a Turing morphogenesis-competent field during WIHN of laboratory and African spiny mice and identify its evo-devo advantages with perspectives for regenerative medicine.



中文翻译:

实验室和多刺小鼠伤口诱导毛囊再生中组织力学的对称性破坏

组织再生是一个重现和恢复器官结构和功能的过程。尽管之前的研究已经证明了实验室小鼠 ( Mus ) 的伤口诱导毛发新生 (WIHN) ,但与在非洲多刺 ( Acomys) 中观察到的不同,再生仅限于伤口中心。) 老鼠。组织力学被认为是组织形态发生的一个组成部分。在这里,我们使用 WIHN 模型来研究实验室和非洲多刺小鼠的机械和分子反应,并报告这些模型表明时空形态发生场形成的相反趋势与伤口僵硬景观的关联。转录组分析和 K14-Cre-Twist1 转基因小鼠显示 Twist1 通路充当表皮-真皮相互作用的介质和周期性模式的能力因子,与开发中使用的那些不同。我们提出了一个基于组织刚度的图灵模型,该模型支持两个尺度的组织力学过程:(1) 在伤口床内建立形态发生场 (mm 尺度) 和 (2) 表皮的对称性破坏并在形态发生场 (μm 尺度) 内形成周期性排列的毛发原基。因此,我们描绘了在实验室和非洲多刺小鼠的 WIHN 期间建立图灵形态发生能力领域的不同化学机械事件,并从再生医学的角度确定其 evo-devo 优势。

更新日期:2021-05-10
down
wechat
bug