当前位置: X-MOL 学术Microelectron. Reliab. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Finite element analysis of moisture induced thermo-mechanical delamination of semiconductor packages considering in-situ moisture desorption during reflow process
Microelectronics Reliability ( IF 1.6 ) Pub Date : 2021-05-10 , DOI: 10.1016/j.microrel.2021.114146
Yeon-Taek Hwang , Hui-Jin Um , Myeong-Hyeon Yu , Dae-Woong Lee , Mi-Jung Lee , Hak-Sung Kim

Polymers are highly affected by moisture and temperature in terms of reliability of packaging. Especially, interface delamination between dissimilar materials with polymer is one of the major issues to the structural integrity and reliability, which is affected significantly by temperature and moisture concentration. In this paper, moisture absorption characteristics and thermo-mechanical delamination of semiconductor packages were predicted by finite element analysis considering moisture and temperature changes during the reflow process simultaneously based on a home-made user's subroutine. To implement the delamination through finite element analysis, moisture absorption experiments were conducted to evaluate hygroscopic properties (diffusivity, concentration) of the package material with different relative humidities (RH) and temperatures. In addition, adhesion strength of bi-material was evaluated by a micro-scale shear test. The measured adhesion strength of bi-material such as Epoxy molding compound (EMC)/Chip, Chip/substrate, and substrate/EMC were implemented in the user's subroutine with respect to the moisture concentration and temperature. The user's subroutine based finite element analysis code was developed to analyze the combined effect of hygroscopic and thermal deformation. As a result, interface delamination was successfully predicted considering the in-situ moisture desorption and temperature increase during the reflow process and interfacial failure strength considering the temperature and moisture concentration.



中文翻译:

考虑回流过程中原位水分解吸的水分诱导半导体封装热机械分层的有限元分析

就包装的可靠性而言,聚合物受湿度和温度的影响很大。特别是,异种材料与聚合物之间的界面分层是结构完整性和可靠性的主要问题之一,而结构完整性和可靠性会受到温度和水分浓度的显着影响。本文通过有限元分析,根据回流焊过程中的水分和温度变化,基于自制用户的子程序,通过有限元分析预测了半导体封装的水分吸收特性和热机械分层。为了通过有限元分析实现分层,进行了吸湿实验,以评估具有不同相对湿度(RH)和温度的包装材料的吸湿性能(扩散率,浓度)。另外,通过微型剪切试验评价了双材料的粘合强度。相对于湿气浓度和温度,在用户的子例程中实现了对双材料(如环氧模塑化合物(EMC)/芯片,芯片/基材和基材/ EMC)的粘合强度的测量。开发了基于用户子程序的有限元分析代码,以分析吸湿变形和热变形的综合影响。结果,考虑到回流过程中的原位水分解吸和温度升高以及考虑温度和水分浓度的界面破坏强度,可以成功预测界面分层。相对于湿气浓度和温度,在用户的子例程中实现了对双材料(如环氧模塑化合物(EMC)/芯片,芯片/基材和基材/ EMC)的粘合强度的测量。开发了基于用户子程序的有限元分析代码,以分析吸湿变形和热变形的综合影响。结果,考虑到回流过程中的原位水分解吸和温度升高以及考虑温度和水分浓度的界面破坏强度,可以成功预测界面分层。相对于湿气浓度和温度,在用户的子例程中实现了对双材料(如环氧模塑化合物(EMC)/芯片,芯片/基材和基材/ EMC)的粘合强度的测量。开发了基于用户子程序的有限元分析代码,以分析吸湿变形和热变形的综合影响。结果,考虑到回流过程中的原位水分解吸和温度升高以及考虑温度和水分浓度的界面破坏强度,可以成功预测界面分层。开发了基于子程序的有限元分析代码,以分析吸湿变形和热变形的综合影响。结果,考虑到回流过程中的原位水分解吸和温度升高以及考虑温度和水分浓度的界面破坏强度,可以成功预测界面分层。开发了基于子程序的有限元分析代码,以分析吸湿变形和热变形的综合影响。结果,考虑到回流过程中的原位水分解吸和温度升高以及考虑温度和水分浓度的界面破坏强度,可以成功预测界面分层。

更新日期:2021-05-10
down
wechat
bug