当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and simulations of high and hypervelocity impact of small ice particles
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2021-05-08 , DOI: 10.1016/j.ijimpeng.2021.103906
Hao Jiang , Valerie Scott , Bo Li

We present a computational model based on the Hot Optimal Transportation Meshfree (HOTM) method and a thermo-visco-elasto-plastic constitutive model for the high-fidelity simulation of high and hypervelocity impact of small ice particles. The competition and combination among various energy dissipation mechanisms in the high energy density event, including plasticity, fracture/fragmentation, and phase change, are predicted by minimizing the thermomechanical system’s potential energy within a variational structure. The variational Eigenerosion algorithm is incorporated in the HOTM method to simulate crack nucleation, propagation, and fragmentation. A multiphase thermo-visco-elasto-plastic model is developed to describe the dynamic response of ice under extreme loading conditions, such as strain and strain-rate hardening, temperature-dependent strength, pressure-dependent viscosity, and phase diagram. The proposed computational framework is validated by comparing to experimental observations and measurements from two ballistic tests at different strain rates. Numerical studies are performed for the impact tests of a microscopic spherical ice particle(800nm) against a Ti-6Al-4V plate at velocities ranging from 250m/s to 5000m/s at an initial temperature of 200K. The evolution of failure modes in the ice projectile is well captured as a result of the energy partitioning explicitly into plasticity, fracture and phase change at different moments. The analysis demonstrates the transition of the dominant failure mechanism due to the increasing input energy density and the nature of stress wave propagation. The competition between fracture and phase change, in the presented configuration of numerical studies, starts when the impact velocity approaching 800m/s and thermal effects play a critical role in determining the local deformation and failure.



中文翻译:

小冰粒高速和超高速撞击的建模和模拟

我们提出了一种基于热最优运输无网格(HOTM)方法和热粘弹弹塑性本构模型的计算模型,用于高保真模拟小冰粒的高和超高速撞击。通过最小化热力学系统在变结构中的势能,可以预测高能量密度事件中各种能量耗散机制之间的竞争和组合,包括可塑性,断裂/碎裂和相变。HOTM方法中采用了变分本征腐蚀算法,以模拟裂纹成核,扩展和断裂。建立了多相热粘弹塑性模型来描述冰在极端载荷条件下的动态响应,例如应变和应变率硬化,温度相关的强度,压力相关的粘度和相图。通过比较不同应变率下两个弹道试验的实验观察和测量结果,验证了所提出的计算框架。对微观球形冰粒的冲击试验进行了数值研究(800纳米)以Ti-6Al-4V板的速度 250/s5000/s 在初始温度为 200ķ。由于能量在不同时刻显式分配为可塑性,断裂和相变,因此可以很好地捕获冰弹中破坏模式的演变。分析表明,由于增加的输入能量密度和应力波传播的性质,主导失效机制的转变。在目前的数值研究中,断裂和相变之间的竞争是在冲击速度接近时开始的。800/s 热效应在确定局部变形和破坏中起着至关重要的作用。

更新日期:2021-05-22
down
wechat
bug