当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intensifying chemical looping dry reforming: Process modeling and systems analysis
Journal of CO2 Utilization ( IF 7.7 ) Pub Date : 2021-05-07 , DOI: 10.1016/j.jcou.2021.101555
Hari C. Mantripragada , Götz Veser

Dry reforming of methane (DRM) to synthesis gas is one of the most well-developed CO2 utilization approaches, but it suffers from low efficiency. This paper explores the use of “chemical looping dry reforming” (CLDR) to intensify DRM by improving its carbon balance and energy efficiency and producing inherently separated syngas (CO and H2) streams. Performance models are presented for a comparative evaluation of four different process configurations, based on different schemes for supplying the heat needed for the endothermal reforming reaction: Combustion of auxiliary methane feed, combustion of some of the produced CO, or internal combustion of a fraction of the carbon formed in the cracking step, either with air or with pure oxygen. Our results show that the CLDR processes can significantly exceed the efficiency of conventional dry reforming in terms of syngas yield and CO2 utilization. The configurations with internal carbon combustion showed the highest efficiency, confirming the importance of heat transfer limitations for dry reforming and highlighting the ability to overcome these limitations via innovative process designs that are enabled by the flexibility offered by the separated reaction steps in chemical looping schemes. Furthermore, all CLDR processes produce inherently separated syngas streams, which makes them a flexible option for a range of downstream technologies without the need for additional process steps to adjust the H2/CO ratio required in conventional dry reforming of methane. Overall, the results confirm that CLDR is a technically viable and strongly intensified process alternative to conventional DRM as a CH4-conversion and CO2-utilization technology.



中文翻译:

加强化学循环干法重整:过程建模和系统分析

将甲烷干重整为合成气是最成熟的CO 2利用方法之一,但效率低下。本文探讨了使用“化学回路干法重整”(CLDR)通过改善DRM的碳平衡和能源效率并产生固有分离的合成气(CO和H 2)来增强DRM的方法。)流。提出了用于比较评估四种不同工艺配置的性能模型,这些模型基于不同的方案来提供吸热重整反应所需的热量:辅助甲烷进料的燃烧,部分产生的一氧化碳的燃烧或一部分甲烷的内燃。在裂解步骤中形成的碳,可以是空气,也可以是纯氧。我们的结果表明,就合成气产量和CO 2而言,CLDR工艺可以大大超过常规干法重整的效率。利用率。内部碳燃烧的配置显示出最高的效率,这证实了传热限制对干重整的重要性,并强调了通过创新工艺设计克服这些限制的能力,这些创新设计得益于化学回路方案中分离的反应步骤所提供的灵活性。此外,所有CLDR工艺均产生固有分离的合成气流,这使其成为一系列下游技术的灵活选择,而无需其他工艺步骤来调整常规干法甲烷重整所需的H 2 / CO比。总体而言,结果证实,CLDR是技术上可行且经过强化的工艺,可替代常规DRM(如CH 4转化和CO)。2-利用技术。

更新日期:2021-05-08
down
wechat
bug