当前位置: X-MOL 学术IEEE Trans. NanoBiosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Speedup and Mathematical Solutions from Implementing Bio-molecular Solutions for the Independent Set Problem on IBM's Quantum Computers.
IEEE Transactions on NanoBioscience ( IF 3.9 ) Pub Date : 2021-04-26 , DOI: 10.1109/tnb.2021.3075733
Weng-Long Chang , Ju-Chin Chen , Wen-Yu Chung , Chun-Yuan Hsiao , Renata Wong , Athanasios V. Vasilakos

In this paper, we propose a bio-molecular algorithm with O(n2 + m) biological operations, O(2n) DNA strands, O(n) tubes and the longest DNA strand, O(n), for solving the independent-set problem for any graph G with m edges and n vertices. Next, we show that a new kind of the straightforward Boolean circuit yielded from the bio-molecular solutions with m NAND gates, (m + n × (n +1)) AND gates and ((n × (n + 1)) / 2) NOT gates can find the maximal independent-set(s) to the independent-set problem for any graph G with m edges and n vertices. We show that a new kind of the proposed quantum-molecular algorithm can find the maximal independent set(s) with the lower bound O(2n/2) queries and the upper bound Ω(2n/2) queries. This work offers an obvious evidence that to solve the independent-set problem in any graph G with m edges and n vertices, bio-molecular computers are able to generate a new kind of the straightforward Boolean circuit such that by means of implementing it quantum computers can give a quadratic speed-up. This work also offers one obvious evidence that quantum computers can significantly accelerate the speed and enhance the scalability of bio-molecular computers. Furthermore, to justify the feasibility of the proposed quantum-molecular algorithm, we successfully solve a typical independent set problem for a graph G with three vertices and two edges by carrying out experiments on the backend ibmqx4 with five quantum bits and the backend simulator with 32 quantum bits on IBM's quantum computer.

中文翻译:

在IBM量子计算机上为独立集合问题实现生物分子解决方案的量子加速和数学解决方案。

在本文中,我们提出了一种具有O(n2 + m)生物操作,O(2n)DNA链,O(n)管和最长DNA链O(n)的生物分子算法,用于求解独立集任何具有m个边和n个顶点的图G的问题。接下来,我们展示了一种新型的简单布尔电路,它是由具有m个NAND门,(m + n×(n +1))AND门和((n×(n + 1))/ 2)对于具有m个边和n个顶点的任何图形G,NOT门无法找到该独立集问题的最大独立集。我们表明,一种新型的提出的量子分子算法可以找到具有下限O(2n / 2)查询和上限Ω(2n / 2)查询的最大独立集。这项工作提供了明显的证据,可以解决任何具有m个边和n个顶点的图G中的独立集问题,生物分子计算机能够生成一种新型的简单布尔电路,从而通过实施它,量子计算机可以实现二次加速。这项工作还提供了一个显而易见的证据,那就是量子计算机可以大大加快生物分子计算机的速度并增强其可扩展性。此外,为证明所提出的量子分子算法的可行性,我们通过对具有五个量子位的后端ibmqx4和具有32个量子点的后端模拟器进行了实验,成功地解决了具有三个顶点和两个边的图G的典型独立集问题。 IBM量子计算机上的量子位。这项工作还提供了一个显而易见的证据,那就是量子计算机可以大大加快生物分子计算机的速度并增强其可扩展性。此外,为证明所提出的量子分子算法的可行性,我们通过对具有五个量子位的后端ibmqx4和具有32个量子点的后端模拟器进行了实验,成功地解决了具有三个顶点和两个边的图G的典型独立集问题。 IBM量子计算机上的量子位。这项工作还提供了一个显而易见的证据,那就是量子计算机可以大大加快生物分子计算机的速度并增强其可扩展性。此外,为证明所提出的量子分子算法的可行性,我们通过对具有五个量子位的后端ibmqx4和具有32个量子点的后端模拟器进行了实验,成功地解决了具有三个顶点和两个边的图G的典型独立集问题。 IBM量子计算机上的量子位。
更新日期:2021-04-26
down
wechat
bug