当前位置: X-MOL 学术Rep. Prog. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Physics of surface vibrational resonances: pillared phononic crystals, metamaterials, and metasurfaces
Reports on Progress in Physics ( IF 18.1 ) Pub Date : 2021-09-09 , DOI: 10.1088/1361-6633/abdab8
Yabin Jin 1 , Yan Pennec 2 , Bernard Bonello 3 , Hossein Honarvar 4, 5, 6 , Leonard Dobrzynski 2 , Bahram Djafari-Rouhani 2 , Mahmoud I Hussein 4, 5
Affiliation  

The introduction of engineered resonance phenomena on surfaces has opened a new frontier in surface science and technology. Pillared phononic crystals, metamaterials, and metasurfaces are an emerging class of artificial structured media, featuring surfaces that consist of pillars—or branching substructures—standing on a plate or a substrate. A pillared phononic crystal exhibits Bragg band gaps, while a pillared metamaterial may feature both Bragg band gaps and local resonance hybridization band gaps. These two band-gap phenomena, along with other unique wave dispersion characteristics, have been exploited for a variety of applications spanning a range of length scales and covering multiple disciplines in applied physics and engineering, particularly in elastodynamics and acoustics. The intrinsic placement of pillars on a semi-infinite surface—yielding a metasurface—has similarly provided new avenues for the control and manipulation of wave propagation. Classical waves are admitted in pillared media, including Lamb waves in plates and Rayleigh and Love waves along the surfaces of substrates, ranging in frequency from hertz to several gigahertz. With the presence of the pillars, these waves couple with surface resonances richly creating new phenomena and properties in the subwavelength regime and in some applications at higher frequencies as well. At the nanoscale, it was shown that atomic-scale resonances—stemming from nanopillars—alter the fundamental nature of conductive thermal transport by reducing the group velocities and generating mode localizations across the entire spectrum of the constituent material well into the terahertz regime. In this article, we first overview the history and development of pillared materials, then provide a detailed synopsis of a selection of key research topics that involve the utilization of pillars or similar branching substructures in different contexts. Finally, we conclude by providing a short summary and some perspectives on the state of the field and its promise for further future development.



中文翻译:

表面振动共振物理学:柱状声子晶体、超材料和超表面

在表面上引入工程共振现象开辟了表面科学和技术的新领域。柱状声子晶体、超材料和超表面是一类新兴的人工结构化介质,其特征是由立在板或基板上的柱子或分支子结构组成的表面。柱状声子晶体表现出布拉格带隙,而柱状超材料可能同时具有布拉格带隙和局部共振杂化带隙。这两种带隙现象以及其他独特的波色散特性已被用于各种应用,跨越一系列长度尺度并涵盖应用物理和工程的多个学科,特别是弹性动力学和声学。柱子在半无限表面上的固有位置——产生超表面——同样为控制和操纵波传播提供了新的途径。经典波在柱状介质中被接受,包括板中的兰姆波和沿基板表面的瑞利波和洛夫波,频率范围从赫兹到几千兆赫。由于柱子的存在,这些波与表面共振结合,在亚波长范围内以及在更高频率的某些应用中创造了丰富的新现象和特性。在纳米尺度上,结果表明,源自纳米柱的原子级共振通过降低群速度并在组成材料的整个光谱中产生模式定位,从而改变传导热传输的基本性质,并进入太赫兹范围。在本文中,我们首先概述了柱状材料的历史和发展,然后提供了一系列关键研究主题的详细概要,这些主题涉及在不同背景下利用柱状材料或类似的分支子结构。最后,我们通过提供一个简短的总结和对该领域现状及其对未来进一步发展的承诺的一些观点来结束。然后提供一系列关键研究主题的详细概要,这些主题涉及在不同背景下使用支柱或类似的分支子结构。最后,我们通过提供一个简短的总结和对该领域现状及其对未来进一步发展的承诺的一些观点来结束。然后提供一系列关键研究主题的详细概要,这些主题涉及在不同背景下使用支柱或类似的分支子结构。最后,我们通过提供一个简短的总结和对该领域现状及其对未来进一步发展的承诺的一些观点来结束。

更新日期:2021-09-09
down
wechat
bug