当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large-scale synthesis of atomically thin ultrawide bandgap β-Ga2O3using a liquid gallium squeezing technique
Journal of Vacuum Science & Technology A ( IF 2.9 ) Pub Date : 2021-03-26 , DOI: 10.1116/6.0000927
Hyunik Park 1 , Yongha Choi 1, 2 , Sujung Yang 1 , Jinho Bae 1 , Jihyun Kim 1, 2
Affiliation  

β-Ga2O3, an emerging ultrawide bandgap (UWBG) semiconductor, offers promising properties for next-generation power electronics, chemical sensors, and solar-blind optoelectronics. Scaling down of β-Ga2O3 to the atomic level affords the advantages of two-dimensional (2D) materials, while maintaining the inherent properties of the parent bulk counterpart. Here, we demonstrate a simple approach to synthesize ultrathin millimeter-size β-Ga2O3 sheets using a liquid gallium squeezing technique. The GaOx nanolayer produced by stamping liquid gallium under the Cabrera–Mott oxidation was converted into few-atom-thick β-Ga2O3 via thermal annealing under atmospheric conditions. This approach was also applied to various substrates such as SiO2, Si, graphene, quartz, and sapphire to heteroepitaxially synthesize 2D β-Ga2O3 on a target substrate. Finally, we propose a patterning strategy combining the squeezing technique with conventional lithography to obtain a β-Ga2O3 layer with a controllable thickness and shape. Our synthetic method has the potential to overcome the limitations of conventional β-Ga2O3 growth methods, paving a path for applications in UWBG-based (opto-)electronics with a high throughput in a cost-effective manner.

中文翻译:

液体镓挤压技术大规模合成超薄带隙原子的β-Ga2O3

的β-Ga 2 ö 3,一个新兴的超宽带隙(UWBG)半导体,提供有前途的下一代电力电子,化学传感器,和太阳能光电盲性。缩放的的β-Ga向下2 ö 3到原子水平,得到的二维(2D)的材料的优点,同时保持母体散装对方的固有性质。在这里,我们展示了一个简单的方法来合成超薄毫米尺寸的β-Ga 2个ö 3使用液体镓挤压技术片材。高氏X通过冲压Cabrera的-莫特氧化下液态镓产生的纳米层转化成几个原子厚的β-Ga 2 ö 3通过在大气条件下进行热退火。这种方法也适用于各种基材如SiO 2,硅,石墨烯,石英和蓝宝石到异质合成2D的β-Ga 2 ö 3在目标基板上。最后,我们提出了一种图案化策略相结合的常规光刻的挤压技术,得到的β-Ga 2 ö 3层具有可控的厚度和形状。我们的合成方法有可能克服传统的β-Ga的限制的电势2 ö 3生长的方法,从而为在基于UWBG-(光磁)与电子以具有成本效益的方式高吞吐量应用的路径。
更新日期:2021-05-07
down
wechat
bug