当前位置: X-MOL 学术Tree Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
RNA in situ hybridization and expression of related genes regulating the accumulation of triterpenoids in Cyclocarya paliurus
Tree Physiology ( IF 4 ) Pub Date : 2021-05-07 , DOI: 10.1093/treephys/tpab067
Xiaoling Chen 1 , Biqin Chen 1 , Xulan Shang 1, 2 , Shengzuo Fang 1, 2
Affiliation  

Abstract
Cyclocarya paliurus, a woody medicinal species in the Juglandaceae, grows extensively in subtropical areas of China. Triterpenoids in the leaves have health-promoting effects, including hypoglycemic and hypolipidemic activities. To understand triterpenoid biosynthesis, transport, and accumulation in C. paliurus during the growing season, gene cloning, gene expression, and RNA in situ hybridization of related genes were used, and accumulation was examined in various organs. The complete CDSs of three genes, CpHMGR, CpDXR, and CpSQS, were obtained from GenBank and RACE. RNA in situ hybridization signals of the three genes mainly occurred in the epidermis, palisade tissue, phloem, and xylem of leaf, shoot, and root, with the signals generally consistent with the accumulation of metabolites in tissues, except in the xylem. Both gene expression and triterpenoid accumulations showed seasonal variations in all organs. However, total triterpenoid content in the leaves was significantly higher than that in the shoots, with the maximum in shoots in August and in leaves in October. According to Pearson correlation analysis, triterpenoid accumulation in the leaves was significantly positively related with the relative expression of CpSQS. However, the relation between gene expression and accumulation was dependent on the role of the gene in the pathway, as well as on the plant organ. The results suggested that most of the intermediates catalyzed by CpHMGR and CpDXR in young shoots and roots were used in growth and flowering in the spring, whereas subsequent triterpenoid biosynthesis in the downstream catalyzed by CpSQS mainly occurred in the leaves by using transferred and in situ intermediates as substrates. Thus, this study provides a reference to improve triterpenoid accumulation in future C. paliurus plantations.
更新日期:2021-05-07
down
wechat
bug