当前位置: X-MOL 学术J. Geophys. Res. Space Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Occurrence Feature of Plasma Bubbles in the Equatorial to Midlatitude Ionosphere During Geomagnetic Storms Using Long‐Term GNSS‐TEC Data
Journal of Geophysical Research: Space Physics ( IF 2.8 ) Pub Date : 2021-05-06 , DOI: 10.1029/2020ja029010
T. Sori 1 , A. Shinbori 1 , Y. Otsuka 1 , T. Tsugawa 2 , M. Nishioka 2
Affiliation  

We performed a superposed epoch analysis of solar wind, interplanetary magnetic field, geomagnetic index, and the rate of total electron content (TEC) index (ROTI) derived from global navigation satellite system‐TEC data during 652 geomagnetic storm events (minimum SYM‐H < −40 nT), to clarify the occurrence features and causes of storm‐time plasma bubbles in the equatorial to mid‐latitude ionosphere. In this analysis, we defined the time of the SYM‐H minimum as the zero epoch. As a result, the ROTI enhancement started at the duskside magnetic equator and expanded to higher latitudes during the main phase. Approximately 1 h after the onset of the recovery phase, the ROTI values at the magnetic equator in the dusk‐to‐midnight sectors decreased while those in the dawn sector increased. This situation persisted for at least 12 h. The ratio of the ROTI during the main phase to that during the quiet period in the dusk sector is the largest in May–July. The ratio of the ROTI during the recovery phase decreased during dusk with increasing solar activity. Considering the requirement of the Rayleigh‐Taylor instability, the difference in the magnetic local time of the ROTI signature, between the main and recovery phases, can be explained by a local time distribution of storm‐time electric fields associated with a prompt penetration electric field and disturbance dynamo. This implies that the occurrence feature of the plasma bubble is different from that during quiet times when the input of solar wind energy to the magnetosphere and ionosphere increases significantly.

中文翻译:

使用长期GNSS-TEC数据在地磁风暴期间赤道至中纬度电离层中等离子体气泡的发生特征

我们对652次地磁风暴事件(最低SYM‐H)中的太阳风,行星际磁场,地磁指数以及从全球导航卫星系统TEC数据得出的总电子含量(TEC)指数(ROTI)进行了叠加的时代分析<−40 nT),以澄清在赤道至中纬度电离层中风暴时间等离子体气泡的发生特征和原因。在此分析中,我们将SYM‐H最小值的时间定义为零时期。结果,ROTI增强从黄昏的磁赤道开始,并在主阶段扩展到更高的纬度。恢复阶段开始后约1小时,黄昏至午夜时段磁赤道的ROTI值降低,而黎明时段午间的ROTI值升高。这种情况持续了至少12小时。在5月至7月,黄昏期间主要时段的ROTI与安静时段的ROTI的比例最大。随着太阳活动的增加,恢复期的ROTI比例在黄昏期间降低。考虑到瑞利-泰勒不稳定性的要求,可以用与快速穿透电场相关的风暴时间电场的局部时间分布来解释在主要阶段和恢复阶段之间,ROTI信号的磁性局部时间的差异。和干扰发电机。这意味着等离子气泡的发生特征与安静时期不同,在安静时期,太阳风能向磁层和电离层的输入显着增加。随着太阳活动的增加,恢复期的ROTI比例在黄昏期间降低。考虑到瑞利-泰勒不稳定性的要求,可以用与快速穿透电场相关的风暴时间电场的局部时间分布来解释在主要阶段和恢复阶段之间,ROTI信号的磁性局部时间的差异。和干扰发电机。这意味着等离子气泡的发生特征与安静时期不同,在安静时期,太阳风能向磁层和电离层的输入显着增加。随着太阳活动的增加,恢复期的ROTI比例在黄昏期间降低。考虑到瑞利-泰勒不稳定性的要求,可以用与快速穿透电场相关的风暴时间电场的局部时间分布来解释在主要阶段和恢复阶段之间,ROTI信号的磁性局部时间的差异。和干扰发电机。这意味着等离子气泡的发生特征与安静时期不同,在安静时期,太阳风能向磁层和电离层的输入显着增加。在主要阶段和恢复阶段之间,可以用与快速穿透电场和扰动发电机有关的风暴时间电场的局部时间分布来解释。这意味着等离子气泡的发生特征与安静时期不同,在安静时期,太阳风能向磁层和电离层的输入显着增加。在主要阶段和恢复阶段之间,可以用与快速穿透电场和扰动发电机有关的风暴时间电场的局部时间分布来解释。这意味着等离子气泡的发生特征与安静时期不同,在安静时期,太阳风能向磁层和电离层的输入显着增加。
更新日期:2021-05-14
down
wechat
bug