当前位置: X-MOL 学术J. Geophys. Res. Space Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cusp Dynamics and Polar Cap Patch Formation Associated With a Small IMF Southward Turning
Journal of Geophysical Research: Space Physics ( IF 2.8 ) Pub Date : 2021-05-06 , DOI: 10.1029/2020ja029090
Y. Nishimura 1 , F. B. Sadler 2 , R. H. Varney 3 , R. Gilles 4 , S. R. Zhang 5 , A. J. Coster 5 , N. Nishitani 6 , A. Otto 7
Affiliation  

We present high‐resolution Resolute Bay Incoherent Scatter Radar (RISR) measurements in the cusp region during an IMF southward turning. The simultaneous RISR‐N and RISR‐C operation provided 3‐D observations of the dayside polar region, and offered an opportunity to identify the cusp dynamics and polar cap patch formation. Associated with the IMF southward turning, the F‐region density and temperature increased in the cusp, and the increase was particularly evident in the topside ionosphere. The high‐density plasma drifted into the polar cap by an enhanced poleward convection, and became a polar cap patch. The patch plasma was initially dominated by density originating in the cusp, and then later the subauroral ionospheric plasma also contributed to the density enhancement. Weak upflows were present but their contribution within the RISR altitude range was minor. We suggest that the patch source region switches due to dynamic variations of the cusp precipitation and convection from lower latitudes. RISR also detected a flow vortex embedded in the large‐scale convection, which is likely a poleward moving auroral form (PMAF) signature. Joule heating peaked in the cusp E and lower F‐regions. The F‐region Pedersen conductivity increased more than the Hall conductivity, and the high conductivity region extended poleward associated with the patch density enhancement. A 1‐D cusp simulation reproduced the density and temperature enhancements by soft electron precipitation, indicating the importance of soft electron precipitation for the cusp dynamics and the initial part of the patch formation.

中文翻译:

尖峰动力学和极小规模的斑块形成与小IMF向南转弯相关

我们提出了在IMF向南转弯时在尖端区域进行的高分辨率Resolute Bay非相干散射雷达(RISR)测量。RISR-N和RISR-C的同时运行提供了对白天极地区域的3D观测,并提供了识别尖顶动力学和极顶盖斑形成的机会。与IMF向南转弯相关,尖峰区的F区密度和温度升高,而在电离层顶侧的升高尤为明显。高密度等离子体通过增强的极向对流飘移到极帽中,并成为极帽斑块。贴片血浆最初主要由起源于尖端的密度决定,然后,耳后电离层血浆也促进了密度的提高。存在少量上涌,但是它们在RISR高度范围内的贡献很小。我们建议,由于低纬度的尖峰降水和对流的动态变化,斑块源区域会发生变化。RISR还检测到嵌入大尺度对流中的流动涡流,这很可能是极向移动的极光形式(PMAF)信号。焦耳热在尖端E和较低F区域达到峰值。F区Pedersen电导率的增加超过了霍尔电导率,而高电导率区域则随着斑块密度的提高而向极极延伸。一维尖峰模拟通过软电子沉淀再现了密度和温度的增强,表明了软电子沉淀对于尖峰动力学和斑块形成的初始部分的重要性。我们建议,由于低纬度的尖峰降水和对流的动态变化,斑块源区域会发生变化。RISR还检测到嵌入大尺度对流中的流动涡流,这很可能是极向移动的极光形式(PMAF)信号。焦耳热在尖端E和较低F区域达到峰值。F区Pedersen电导率的增加超过了霍尔电导率,而高电导率区域则随着斑块密度的提高而向极极延伸。一维尖峰模拟通过软电子沉淀再现了密度和温度的增强,表明软电子沉淀对于尖峰动力学和斑块形成的初始部分很重要。我们建议,由于低纬度的尖峰降水和对流的动态变化,斑块源区域会发生变化。RISR还检测到嵌入大尺度对流中的流动涡流,这很可能是极向移动的极光形式(PMAF)信号。焦耳热在尖端E和较低F区域达到峰值。F区Pedersen电导率的增加超过了霍尔电导率,而高电导率区域则随着斑块密度的提高而向极极延伸。一维尖峰模拟通过软电子沉淀再现了密度和温度的增强,表明软电子沉淀对于尖峰动力学和斑块形成的初始部分很重要。RISR还检测到嵌入大尺度对流中的流动涡流,这很可能是极向移动的极光形式(PMAF)信号。焦耳热在尖端E和较低F区域达到峰值。F区Pedersen电导率的增加超过了霍尔电导率,而高电导率区域则随着斑块密度的提高而向极极延伸。一维尖峰模拟通过软电子沉淀再现了密度和温度的增强,表明软电子沉淀对于尖峰动力学和斑块形成的初始部分很重要。RISR还检测到嵌入大尺度对流中的流动涡流,这很可能是极向移动的极光形式(PMAF)信号。焦耳热在尖端E和较低F区域达到峰值。F区Pedersen电导率的增加超过了霍尔电导率,而高电导率区域则随着斑块密度的提高而向极极延伸。一维尖峰模拟通过软电子沉淀再现了密度和温度的增强,表明软电子沉淀对于尖峰动力学和斑块形成的初始部分很重要。F区Pedersen电导率的增加超过了霍尔电导率,而高电导率区域则随着斑块密度的提高而向极极延伸。一维尖峰模拟通过软电子沉淀再现了密度和温度的增强,表明软电子沉淀对于尖峰动力学和斑块形成的初始部分很重要。F区Pedersen电导率的增加超过了霍尔电导率,而高电导率区域则随着斑块密度的提高而向极极延伸。一维尖峰模拟通过软电子沉淀再现了密度和温度的增强,表明软电子沉淀对于尖峰动力学和斑块形成的初始部分很重要。
更新日期:2021-05-17
down
wechat
bug