当前位置: X-MOL 学术Symmetry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cytoskeletal Filaments Deep Inside a Neuron Are Not Silent: They Regulate the Precise Timing of Nerve Spikes Using a Pair of Vortices
Symmetry ( IF 2.940 ) Pub Date : 2021-05-07 , DOI: 10.3390/sym13050821
Pushpendra Singh , Pathik Sahoo , Komal Saxena , Jhimli Sarkar Manna , Kanad Ray , Subrata Ghosh , Anirban Bandyopadhyay

Hodgkin and Huxley showed that even if the filaments are dissolved, a neuron’s membrane alone can generate and transmit the nerve spike. Regulating the time gap between spikes is key to the brain’s cognitive function; however, the time modulation mechanism is still a mystery. By inserting a coaxial probe deep inside a neuron, we repeatedly show that the filaments transmit electromagnetic signals of ~200 μs before an ionic nerve spike sets in. To understand its origin, here, we mapped the electromagnetic vortex produced by a filamentary bundle deep inside a neuron, regulating the nerve spike’s electrical-ionic vortex. We used monochromatic polarized light to measure the transmitted signals beating from the internal components of a cultured neuron. A nerve spike is a 3D ring of the electric field encompassing the perimeter of a neural branch. Several such vortices flow sequentially to keep precise timing for the brain’s cognition. The filaments hold millisecond order time gaps between membrane spikes with microsecond order signaling of electromagnetic vortices. Dielectric resonance images revealed that ordered filaments inside neural branches instruct the ordered grid-like network of actin–beta-spectrin just below the membrane. That layer builds a pair of electric field vortices, which coherently activates all ion-channels in a circular area of the membrane lipid bilayer when a nerve spike propagates. When biomaterials vibrate resonantly with microwave and radio-wave, simultaneous quantum optics capture ultra-fast events in a non-demolition mode, revealing multiple correlated time-domain operations beyond the Hodgkin–Huxley paradigm. Neuron holograms pave the way to understanding the filamentary circuits of a neural network in addition to membrane circuits.

中文翻译:

神经元内部的细胞骨架丝并不沉默:它们使用一对涡流调节神经突波的精确定时

霍奇金和赫x黎研究表明,即使细丝溶解了,仅神经元的膜也可以产生并传递神经尖峰。调节峰值之间的时间间隔是大脑认知功能的关键。但是,时间调制机制仍然是一个谜。通过在神经元内部深处插入同轴探针,我们反复显示出细丝在离子神经尖峰进入之前会传输〜200μs的电磁信号。为了了解其起源,在这里,我们绘制了由深部细丝束产生的电磁涡旋神经元,调节神经尖峰的电离子涡旋。我们使用单色偏振光来测量从培养的神经元内部组件发出的跳动的信号。神经尖峰是围绕神经分支周边的电场的3D环。几个这样的涡流顺序流动,以保持大脑认知的精确时机。细丝保持膜尖峰之间的毫秒级时间间隔,并带有电磁涡旋的微秒级信号。介电共振图像显示,神经分支内的有序细丝指示膜下方的肌动蛋白-β-血影蛋白的有序网格状网络。该层会形成一对电场涡流,当神经尖峰传播时,它们会相干地激活膜脂质双层的圆形区域中的所有离子通道。当生物材料与微波和无线电波共振振动时,同时量子光学器件会以非爆破模式捕获超快事件,从而揭示了超出霍奇金-赫克斯利范式的多个相关时域操作。
更新日期:2021-05-07
down
wechat
bug