当前位置: X-MOL 学术Fusion Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Manufacturing Technologies for Ultra-High-Vacuum–Compatible 10 MW/m2 High Heat Flux Components for Application in Fusion Devices
Fusion Science and Technology ( IF 0.9 ) Pub Date : 2021-05-06 , DOI: 10.1080/15361055.2021.1898856
Hitesh Patel 1 , Nirmal Panda 2 , Nitin Kanoongo 2 , K. Balasubramanian 2 , M. J. Singh 1 , Arun Chakraborty 1
Affiliation  

Abstract

High heat flux components form the primary interface for thermal management of injectors in fusion devices. The requirement for such application varies from 1 to 10 MW/m2. Ultra-high-vacuum compatibility is the inherent characteristic of such components, and manufacturing processes involve the development of specific materials, process qualification of special processes like electron beam welding (EBW), and component performance validation. One such component of active thermal management in a neutral beam injector is the hypervapatron-based heat transfer element (HTE), which is designed to absorb heat flux as high as 10 MW/m2. The route to realization is through a prototype and a one-to-one model and evaluating their performance. The development route of HTEs includes several important areas. One area is development of precipitation-hardened CuCrZr material characterized for its fatigue life (more than 100 000 stress-controlled cycles); mechanical properties at ambient temperature [ultimate tensile strength (UTS) >384 MPa, elongation >13%] and at operational temperature, i.e., 350°C (UTS >263 MPa, elongation >14%); and restricted chemical composition range of Cr, Zr, Cd, and O2 to enhance the precipitation effect and weldability of the component. A second area is similar material (CuCrZr to CuCrZr) and dissimilar material (CuCrZr-Ni-SS316L) joining by an advanced technology like EBW in a controlled environment to enhance the localized high heat input over a large weld penetration depth with minimal distortion and thereby overcome the effect of thermal diffusion by typical copper during welding. A third area is validation of these weld joints with respect to international codes/standards. Successful realization of this route establishes HTEs as main baseline components of the high heat flux system or neutral beam system. Similar application areas can be identified in various fusion devices. The paper presents the implementation of this realization route of prototype HTEs including details of the assessment carried out with respect to application.



中文翻译:

适用于融合设备的超高真空兼容10 MW / m2高热通量组件制造技术

摘要

高热通量成分形成了聚变设备中注射器热管理的主要界面。此类应用的要求从1到10 MW / m 2不等。超高真空相容性是此类组件的固有特性,制造工艺涉及特定材料的开发,特殊工艺(如电子束焊接(EBW))的工艺鉴定以及组件性能验证。中性束注入器中主动热管理的此类组件之一是基于超vapatron的传热元件(HTE),该元件设计用于吸收高达10 MW / m 2的热通量。实现的途径是通过原型和一对一模型并评估其性能。HTE的发展路线包括几个重要领域。一种领域是沉淀硬化CuCrZr材料的开发,该材料以其疲劳寿命(超过100,000次应力控制循环)为特征。在环境温度[最终抗张强度(UTS)> 384 MPa,伸长率> 13%]和工作温度(即350°C(UTS> 263 MPa,伸长率> 14%))下的机械性能;和限制的Cr,Zr,Cd和O 2的化学组成范围增强部件的析出效果和可焊性。第二个区域是类似材料(CuCrZr到CuCrZr)和异种材料(CuCrZr-Ni-SS316L)通过诸如EBW之类的先进技术在受控环境中结合,从而在较大的焊缝熔深范围内提高局部高热量输入,从而将变形最小化,从而克服了典型的铜在焊接过程中的热扩散效应。第三方面是根据国际规范/标准对这些焊接接头进行验证。成功实现此路线后,HTE便成为高热通量系统或中性束系统的主要基准组件。可以在各种融合设备中识别出类似的应用领域。

更新日期:2021-05-25
down
wechat
bug