当前位置: X-MOL 学术Auton. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The inevitability of ATP as a transmitter in the carotid body
Autonomic Neuroscience ( IF 2.7 ) Pub Date : 2021-05-07 , DOI: 10.1016/j.autneu.2021.102815
Emma N Bardsley 1 , Dylan K Pen 1 , Fiona D McBryde 1 , Anthony P Ford 2 , Julian F R Paton 1
Affiliation  

Atmospheric oxygen concentrations rose markedly at several points in evolutionary history. Each of these increases was followed by an evolutionary leap in organismal complexity, and thus the cellular adaptions we see today have been shaped by the levels of oxygen within our atmosphere. In eukaryotic cells, oxygen is essential for the production of adenosine 5′-triphosphate (ATP) which is the ‘Universal Energy Currency’ of life. Aerobic organisms survived by evolving precise mechanisms for converting oxygen within the environment into energy. Higher mammals developed specialised organs for detecting and responding to changes in oxygen content to maintain gaseous homeostasis for survival. Hypoxia is sensed by the carotid bodies, the primary chemoreceptor organs which utilise multiple neurotransmitters one of which is ATP to evoke compensatory reflexes. Yet, a paradox is presented in oxygen sensing cells of the carotid body when during periods of low oxygen, ATP is seemingly released in abundance to transmit this signal although the synthesis of ATP is theoretically halted because of its dependence on oxygen. We propose potential mechanisms to maintain ATP production in hypoxia and summarise recent data revealing elevated sensitivity of purinergic signalling within the carotid body during conditions of sympathetic overactivity and hypertension. We propose the carotid body is hypoxic in numerous chronic cardiovascular and respiratory diseases and highlight the therapeutic potential for modulating purinergic transmission.



中文翻译:

ATP 作为颈动脉体中发射器的必然性

大气氧浓度在进化历史的几个点上显着上升。这些增加中的每一个都伴随着有机体复杂性的进化飞跃,因此我们今天看到的细胞适应性是由我们大气中的氧气水平决定的。在真核细胞中,氧气对于生产 5'-三磷酸腺苷 (ATP) 是必不可少的,ATP 是生命的“通用能源货币”。好氧生物通过进化将环境中的氧气转化为能量的精确机制而存活下来。高等哺乳动物发展出专门的器官来检测和响应氧含量的变化,以维持气体稳态以求生存。颈动脉体能感觉到缺氧,利用多种神经递质的主要化学感受器器官,其中一种是 ATP 来引起代偿性反射。然而,当在低氧期间,虽然 ATP 的合成在理论上停止,但由于其依赖于氧气,似乎大量释放 ATP 以传递该信号,因此在颈动脉体的氧感应细胞中出现了一个悖论。我们提出了在缺氧条件下维持 ATP 产生的潜在机制,并总结了最近的数据,这些数据揭示了在交感神经过度活跃和高血压的情况下颈动脉体内嘌呤能信号的敏感性升高。我们提出颈动脉体在许多慢性心血管和呼吸系统疾病中是缺氧的,并强调了调节嘌呤能传输的治疗潜力。当在低氧期间,虽然 ATP 的合成在理论上停止了,但在低氧期间似乎大量释放 ATP 以传递该信号,但在颈动脉体的氧感应细胞中出现了一个悖论,因为它依赖于氧。我们提出了在缺氧条件下维持 ATP 产生的潜在机制,并总结了最近的数据,这些数据揭示了在交感神经过度活跃和高血压的情况下颈动脉体内嘌呤能信号的敏感性升高。我们提出颈动脉体在许多慢性心血管和呼吸系统疾病中是缺氧的,并强调了调节嘌呤能传输的治疗潜力。当在低氧期间,虽然 ATP 的合成在理论上停止了,但在低氧期间似乎大量释放 ATP 以传递该信号,但在颈动脉体的氧感应细胞中出现了一个悖论,因为它依赖于氧。我们提出了在缺氧条件下维持 ATP 产生的潜在机制,并总结了最近的数据,这些数据揭示了在交感神经过度活跃和高血压的情况下颈动脉体内嘌呤能信号的敏感性升高。我们提出颈动脉体在许多慢性心血管和呼吸系统疾病中是缺氧的,并强调了调节嘌呤能传输的治疗潜力。尽管理论上 ATP 的合成由于依赖氧气而停止,但似乎大量释放 ATP 以传递此信号。我们提出了在缺氧条件下维持 ATP 产生的潜在机制,并总结了最近的数据,这些数据揭示了在交感神经过度活跃和高血压的情况下颈动脉体内嘌呤能信号的敏感性升高。我们提出颈动脉体在许多慢性心血管和呼吸系统疾病中是缺氧的,并强调了调节嘌呤能传输的治疗潜力。尽管理论上 ATP 的合成由于依赖氧气而停止,但似乎大量释放 ATP 以传递此信号。我们提出了在缺氧条件下维持 ATP 产生的潜在机制,并总结了最近的数据,这些数据揭示了在交感神经过度活跃和高血压的情况下颈动脉体内嘌呤能信号的敏感性升高。我们提出颈动脉体在许多慢性心血管和呼吸系统疾病中是缺氧的,并强调了调节嘌呤能传输的治疗潜力。

更新日期:2021-05-13
down
wechat
bug