当前位置: X-MOL 学术Bioremed. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization and oil recovery application of biosurfactant produced during bioremediation of waste engine oil by strain Pseudomonas aeruginosa gi|KP 16392| isolated from Sambhar salt lake
Bioremediation Journal ( IF 2 ) Pub Date : 2021-05-05 , DOI: 10.1080/10889868.2020.1871316
Shailee Gaur 1 , Suresh Gupta 1 , Amit Jain 1
Affiliation  

Abstract

Halophilic bacterium, Pseudomonas aeruginosa gi|KP 16392| isolated from Sambhar salt lake in the southwest region of the city of Jaipur, India was tested for the first time for potential application in waste engine oil bioremediation and simultaneous biosurfactant production. In this study, the batch experiments were performed on culture grown in mineral salt medium supplemented with 5% (v/v) waste engine oil as the sole carbon source incubated for a week at pH 7.0, maintaining 35 °C and 150 rpm. The bacterial growth was monitored by the optical density and dry biomass content measurements. The biosurfactant production was affirmed with the reduction in surface tension of the culture medium from 72 ± 0.36 to 29.61 ± 0.14 mN/m. Of the total waste engine oil fed, 74.35 ± 0.037% was consumed and biodegraded to secondary metabolites. The biosurfactant yield was found to be approximately 1.02 g/L. The functional groups in the product, identified with the Fourier transform infrared spectroscopy confirms to be rhamnolipid and characterized using microbial adhesion to hydrocarbon (math) test and methyl assay. The emulsification activity of the produced biosurfactant was assessed for various hydrophobic substrates and was found to be comparable to the chemical surfactant (sodium dodecyl sulfate). The biosynthetic pathway (de novo synthesis) used by microbial strain to form rhamnolipid is schematically represented. The performance of the purified biosurfactant in oil recovery application was tested using a simulated waste engine oil contaminated soil and it showed excellent surface activity.



中文翻译:

铜绿假单胞菌 gi|KP 16392| 生物修复废机油过程中产生的生物表面活性剂的表征及油回收应用 与桑巴尔盐湖隔离

摘要

嗜盐菌,铜绿假单胞菌gi|KP 16392| 从印度斋浦尔市西南地区的 Sambhar 盐湖中分离出来的样品首次被测试在废机油生物修复和同步生物表面活性剂生产中的潜在应用。在本研究中,对在添加了 5% (v/v) 废机油作为唯一碳源的矿物盐培养基中生长的培养物进行分批实验,在 pH 7.0 下培养一周,保持 35 °C 和 150 rpm。通过光密度和干生物量含量测量来监测细菌生长。随着培养基的表面张力从 72 ± 0.36 降低到 29.61 ± 0.14 mN/m,生物表面活性剂的生产得到确认。在供给的总废机油中,74.35 ± 0.037% 被消耗并被生物降解为次生代谢物。发现生物表面活性剂的产量约为 1。02 克/升。产品中的官能团通过傅里叶变换红外光谱确定为鼠李糖脂,并使用微生物对碳氢化合物的粘附(数学)测试和甲基测定进行表征。所生产的生物表面活性剂的乳化活性对各种疏水底物进行了评估,发现与化学表面活性剂(十二烷基硫酸钠)相当。微生物菌株用于形成鼠李糖脂的生物合成途径(从头合成)用示意图表示。使用模拟废机油污染的土壤测试纯化的生物表面活性剂在石油回收应用中的性能,并显示出优异的表面活性。用傅里叶变换红外光谱确定为鼠李糖脂,并使用微生物对碳氢化合物的粘附(数学)测试和甲基测定进行表征。所生产的生物表面活性剂的乳化活性对各种疏水底物进行了评估,发现与化学表面活性剂(十二烷基硫酸钠)相当。微生物菌株用于形成鼠李糖脂的生物合成途径(从头合成)用示意图表示。使用模拟废机油污染的土壤测试纯化的生物表面活性剂在石油回收应用中的性能,并显示出优异的表面活性。用傅里叶变换红外光谱确定为鼠李糖脂,并使用微生物对碳氢化合物的粘附(数学)测试和甲基测定进行表征。所生产的生物表面活性剂的乳化活性对各种疏水底物进行了评估,发现与化学表面活性剂(十二烷基硫酸钠)相当。微生物菌株用于形成鼠李糖脂的生物合成途径(从头合成)用示意图表示。使用模拟废机油污染的土壤测试纯化的生物表面活性剂在石油回收应用中的性能,并显示出优异的表面活性。所生产的生物表面活性剂的乳化活性对各种疏水底物进行了评估,发现与化学表面活性剂(十二烷基硫酸钠)相当。微生物菌株用于形成鼠李糖脂的生物合成途径(从头合成)用示意图表示。使用模拟废机油污染的土壤测试纯化的生物表面活性剂在石油回收应用中的性能,并显示出优异的表面活性。所生产的生物表面活性剂的乳化活性对各种疏水底物进行了评估,发现与化学表面活性剂(十二烷基硫酸钠)相当。微生物菌株用于形成鼠李糖脂的生物合成途径(从头合成)用示意图表示。使用模拟废机油污染的土壤测试纯化的生物表面活性剂在石油回收应用中的性能,并显示出优异的表面活性。

更新日期:2021-05-05
down
wechat
bug