当前位置: X-MOL 学术Bull. Earthquake Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural change detection applying long-term seismic interferometry by deconvolution method to a modern civil engineering structure (New Zealand)
Bulletin of Earthquake Engineering ( IF 4.6 ) Pub Date : 2021-05-04 , DOI: 10.1007/s10518-021-01110-3
Anna Maria Skłodowska , Caroline Holden , Philippe Guéguen , John Finnegan , Geoff Sidwell

Pulse-wave propagation velocity and resonance frequency measured in civil engineering structures are both related to structural design. Monitoring their variation following seismic strong shaking provides information about the immediate building capacity. Joint-interpretation of frequency and velocity variation requires a better understanding of the processes controlling seismic structural health. In this study, we analysed 8 years of earthquake data recorded by the vertical array installed in the Te Puni building in Wellington, New Zealand, as part of the GeoNet building instrumentation programme. Co-seismic variations of pulse wave velocity and fundamental frequency are analysed and interpreted through a Timoshenko beam-like building model. This study shows that even though no structural damage was visually reported over the considered time of monitoring, co- and post-seismic variation of both parameters’ values are observed for almost all earthquakes, including a permanent shift following strong ground shaking. Variations of pulse-wave velocity and resonance frequency are cross-interpreted in terms of the building model. They reflect a time variant building response, correlated with the seismic loading. In addition, time delay of the pulse-wave velocity as a function of the building height provides relevant information on the location of the changes and confirms the efficient cross-interpretation of both methods for seismic Structural Health monitoring.



中文翻译:

通过长期反卷积地震干涉法对现代土木工程结构进行结构变化检测(新西兰)

在土木工程结构中测得的脉搏波传播速度和共振频率均与结构设计有关。监测地震强烈震动后的变化,可提供有关即时建筑能力的信息。频率和速度变化的联合解释需要更好地了解控制地震结构健康的过程。在这项研究中,作为GeoNet建筑仪器计划的一部分,我们分析了由安装在新西兰惠灵顿Te Puni建筑中的垂直阵列记录的8年地震数据。通过蒂莫申科梁式建筑模型分析和解释了脉动波速度和基频的同震变化。这项研究表明,即使在所考虑的监测时间内没有目视报告结构性破坏,但几乎在所有地震中都观察到了两个参数值的同震和震后变化,包括强震后的永久位移。根据建筑模型交叉解释了脉搏波速度和共振频率的变化。它们反映了与地震荷载相关的时变建筑响应。此外,脉搏波速度随建筑物高度而变的延时提供了有关变化位置的相关信息,并证实了两种地震结构健康监测方法的有效交叉解释。包括剧烈震动后的永久移动。根据建筑模型交叉解释了脉搏波速度和共振频率的变化。它们反映了与地震荷载相关的时变建筑响应。此外,脉搏波速度随建筑物高度而变的延时提供了有关变化位置的相关信息,并证实了两种地震结构健康监测方法的有效交叉解释。包括剧烈震动后的永久移动。根据建筑模型交叉解释了脉搏波速度和共振频率的变化。它们反映了与地震荷载相关的时变建筑响应。此外,脉搏波速度随建筑物高度而变的延时提供了有关变化位置的相关信息,并证实了两种地震结构健康监测方法的有效交叉解释。

更新日期:2021-05-05
down
wechat
bug