当前位置: X-MOL 学术Philos. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Migration energy of a self-interstitial atom in α-iron estimated by in situ observation of interstitial clusters at low temperatures using high-voltage electron microscopy
Philosophical Magazine ( IF 1.6 ) Pub Date : 2021-05-05 , DOI: 10.1080/14786435.2021.1921873
Y. Abe 1 , Y. Satoh 2 , N. Hashimoto 3
Affiliation  

ABSTRACT

Modeling cluster dynamics or rate theory to describe the microstructural evolution of irradiated materials requires a precise knowledge of the migration energy of a self-interstitial atom (SIA), a product of energetic particle radiation. We measured the evolution of the number density of SIA clusters in electron-irradiated α-iron at low temperatures (110–320 K) by in situ observation using high-voltage electron microscopy. We identified temperature-dependent physical quantities, including (1) the peak density of SIA clusters and (2) the critical defect-free zone thickness in a thin foil specimen, associated with interstitial mobility. By fitting these quantities to the Arrhenius relations derived by rate theory analysis, we obtained estimated interstitial migration energy values of 0.26±0.04 and 0.30±0.03 eV for (1) and (2), respectively.



中文翻译:

使用高压电子显微镜在低温下原位观察间隙簇估计α-铁中自间隙原子的迁移能

摘要

模拟簇动力学或速率理论来描述受辐照材料的微观结构演化,需要精确了解自填隙原子 (SIA)(高能粒子辐射的产物)的迁移能量。我们通过使用高压电子显微镜的原位观察测量了低温(110-320 K)电子辐照α-铁中SIA簇数密度的演变。我们确定了与温度相关的物理量,包括 (1) SIA 簇的峰值密度和 (2) 薄箔试样中与间隙迁移率相关的临界无缺陷区厚度。通过将这些量拟合到由速率理论分析得出的阿伦尼乌斯关系,我们获得了估计的间隙迁移能量值0.26±0.040.30±0.03 分别为(1)和(2)的eV。

更新日期:2021-05-05
down
wechat
bug