当前位置: X-MOL 学术Arab. J. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear Heat Source/Sink and Activation Energy Assessment in Double Diffusion Flow of Micropolar (Non-Newtonian) Nanofluid with Convective Conditions
Arabian Journal for Science and Engineering ( IF 2.9 ) Pub Date : 2021-05-04 , DOI: 10.1007/s13369-021-05692-7
Yun-Xiang Li , Umar F. Alqsair , Katta Ramesh , Sami Ullah Khan , M. Ijaz Khan

The enhancement in heat transfer based on the utilization of nanoparticles is an attractive research area, and many scientists have intended their interest on this topic. With progressive features, the nanofluid reflects many applications in thermal engineering, heat exchangers, cooling phenomenon, magnetic cell separation, energy production, hyperthermia, etc. Following to the motivating significances of nano-materials, current research endorses the double diffusion thermal assessment of viscoelastic nanofluid with dynamic applications of activation energy and nonlinear mixed convection. The heat source/sink phenomenon with nonlinear relations is also incorporated. The stretched porous configuration caused the uniform flow pattern. The viscoelastic behavior of non-Newtonian fluid is inspected with applications of generalized micropolar fluid model. The primary motivations for selecting generalized micropolar fluid model are justified as it captures micropolar fluid, second-grade fluid, and viscous fluid results simultaneously. The convective transport of nanofluid has been examined via utilizing the convective temperature boundary conditions. The model equations for assumed flow model are reduced into dimensionless forms. The analytical solution for the modeled flow problem is obtained by using homotopy analysis scheme. The physical transport of flow parameters is graphically accessed. The numerical data are originated by using the relations of local Nusselt number, Sherwood number, and the motile microorganism density number. It is noted that nanofluid temperature improves with vortex viscosity parameter and viscoelastic parameter, while it increases with modified Dufour number. The solutal concentration profile grows up with Dufour Lewis number, while it decays with regular Lewis number. Moreover, the wall shear stress increases with viscoelastic parameter and Hartmann number.



中文翻译:

具有对流条件的微极性(非牛顿)纳米流体双扩散流中的非线性热源/吸收和活化能评估

基于利用纳米颗粒的传热增强是一个有吸引力的研究领域,许多科学家已经将他们的兴趣放在了这个主题上。纳米流体具有先进的特性,反映出在热工程,热交换器,冷却现象,磁性细胞分离,能量产生,热疗等方面的许多应用。鉴于纳米材料的积极意义,当前的研究认可了粘弹性的双扩散热评估。具有动态应用的活化能和非线性混合对流的纳米流体。具有非线性关系的热源/散热现象也被并入。拉伸的多孔结构导致均匀的流型。非牛顿流体的粘弹性行为是通过广义微极性流体模型的应用来检查的。选择广义微极性流体模型的主要动机是合理的,因为它可以同时捕获微极性流体,二级流体和粘性流体的结果。通过利用对流温度边界条件检查了纳米流体的对流传输。假定流动模型的模型方程简化为无量纲形式。通过使用同伦分析方案,获得了模型流动问题的解析解。流量参数的物理传输以图形方式访问。数值数据是通过使用局部Nusselt数,Sherwood数和运动微生物密度数的关系得出的。值得注意的是,纳米流体温度随着涡流粘度参数和粘弹性参数的提高而提高,而随着修正的杜福尔数的增加而升高。溶液浓度曲线随Dufour Lewis数增长,而随规则Lewis数衰减。此外,壁剪切应力随着粘弹性参数和哈特曼数的增加而增加。

更新日期:2021-05-04
down
wechat
bug