当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
An ensemble-based semi-supervised feature ranking for multi-target regression problems
Pattern Recognition Letters ( IF 3.255 ) Pub Date : 2021-05-04 , DOI: 10.1016/j.patrec.2021.04.025
Esra Adiyeke, Mustafa Gökçe Baydoğan

This study focuses on semi-supervised feature ranking (FR) applications for multi-target regression problems (MTR). As MTRs require prediction of several targets, we use a learning model that includes target interrelations via multi-objective trees. In processing the features for semi-supervised learning model, transformation or scaling operations are usually required. To resolve this issue, we create a dissimilarity matrix via totally randomized trees to process the unsupervised information. Besides, we treat the split score function as a vector to make it suitable for considering each criterion regardless of their scales. We propose a semi-supervised FR scheme embedded to multi-objective trees that takes into account target and feature contributions simultaneously. Proposed FR score is compared with the state-of-the-art multi-target FR strategies via statistical analyses. Experimental studies show that proposed score significantly improves the performance of a recent tree-based and competitive multi-target learning model, i.e. predictive clustering trees. In addition, proposed approach outperforms its benchmarks when the available labelled data increase.



中文翻译:

基于集合的半监督特征排序,用于多目标回归问题

这项研究的重点是针对多目标回归问题(MTR)的半监督特征排名(FR)应用程序。由于MTR需要预测几个目标,因此我们使用一种学习模型,该模型包括通过多目标树进行的目标关联。在处理半监督学习模型的特征时,通常需要进行变换或缩放操作。为了解决这个问题,我们通过完全随机化的树创建一个不相似矩阵来处理无监督的信息。此外,我们将分割分数函数视为向量,以使其适合于考虑每个标准的规模。我们提出了一种嵌入到多目标树中的半监督FR方案,该方案同时考虑了目标和特征贡献。通过统计分析将建议的FR得分与最新的多目标FR策略进行比较。实验研究表明,建议分数显着提高了最近的基于树的竞争性多目标学习模型(即预测聚类树)的性能。此外,当可用的标记数据增加时,建议的方法将优于其基准。

更新日期:2021-05-04
全部期刊列表>>
欢迎新作者ACS
聚焦环境污染物
专攻离子通道生理学研究
中国作者高影响力研究精选
虚拟特刊
屿渡论文,编辑服务
浙大
上海中医药大学
苏州大学
江南大学
四川大学
灵长脑研究中心
毛凌玲
南开大学陈瑶
朱如意
中科院
南开大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
华辉
天合科研
x-mol收录
试剂库存
down
wechat
bug