当前位置: X-MOL 学术arXiv.cs.RO › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A LiDAR Assisted Control Module with High Precision in Parking Scenarios for Autonomous Driving Vehicle
arXiv - CS - Robotics Pub Date : 2021-05-02 , DOI: arxiv-2105.00398
Xin Xu, Yu Dong, Fan Zhu

Autonomous driving has been quite promising in recent years. The public has seen Robotaxi delivered by Waymo, Baidu, Cruise, and so on. While autonomous driving vehicles certainly have a bright future, we have to admit that it is still a long way to go for products such as Robotaxi. On the other hand, in less complex scenarios autonomous driving may have the potentiality to reliably outperform humans. For example, humans are good at interactive tasks (while autonomous driving systems usually do not), but we are often incompetent for tasks with strict precision demands. In this paper, we introduce a real-world, industrial scenario of which human drivers are not capable. The task required the ego vehicle to keep a stationary lateral distance (i.e. 3? <= 5 centimeters) with respect to a reference. To address this challenge, we redesigned the control module from Baidu Apollo open-source autonomous driving system. A precise (3? <= 2 centimeters) Error Feedback System was first built to partly replace the localization module. Then we investigated the control module thoroughly and added a real-time calibration algorithm to gain extra precision. We also built a simulation to fine-tune the control parameters. After all those works, the results are encouraging, showing that an end-to-end lateral precision with 3? <= 5 centimeters has been achieved. Further, we show that the results not only outperformed original Apollo modules but also beat specially trained and highly experienced human test drivers.

中文翻译:

用于自动驾驶车辆停车场景的高精度LiDAR辅助控制模块

近年来,自动驾驶非常有前途。公众已经看到Waymo,百度,Cruise等提供的Robotaxi。尽管自动驾驶汽车的前途肯定是光明的,但我们必须承认,对于像Robotaxi这样的产品来说,它还有很长的路要走。另一方面,在不太复杂的情况下,自动驾驶可能具有可靠地胜过人类的潜力。例如,人类擅长交互任务(而自动驾驶系统通常不擅长),但是对于严格的精度要求,我们通常是无能为力的。在本文中,我们介绍了人类驾驶员无法胜任的现实工业场景。这项任务要求自我车辆相对于参照物保持固定的横向距离(即3?<= 5厘米)。为了应对这一挑战,我们重新设计了百度Apollo开源自动驾驶系统的控制模块。首先构建了一个精确的(3?<= 2厘米)错误反馈系统,以部分替换本地化模块。然后,我们对控制模块进行了深入研究,并添加了实时校准算法以提高精度。我们还建立了一个仿真来微调控制参数。经过所有这些工作,结果令人鼓舞,表明端到端横向精度为3?。<= 5厘米已实现。此外,我们证明了结果不仅超越了原始的Apollo模块,而且击败了经过专门培训和经验丰富的人工测试驾驶员。= 2厘米)最初构建了错误反馈系统以部分替换本地化模块。然后,我们对控制模块进行了深入研究,并添加了实时校准算法以提高精度。我们还建立了一个仿真来微调控制参数。经过所有这些工作,结果令人鼓舞,表明端到端横向精度为3?。<= 5厘米已实现。此外,我们证明了结果不仅超越了原始的Apollo模块,而且击败了经过专门培训和经验丰富的人工测试驾驶员。= 2厘米)最初构建了错误反馈系统以部分替换本地化模块。然后,我们对控制模块进行了深入研究,并添加了实时校准算法以提高精度。我们还建立了一个仿真来微调控制参数。经过所有这些工作,结果令人鼓舞,表明端到端横向精度为3?。<= 5厘米已实现。此外,我们证明了结果不仅超越了原始的Apollo模块,而且击败了经过专门培训和经验丰富的人工测试驾驶员。表明端到端横向精度为3?<= 5厘米已实现。此外,我们证明了结果不仅超越了原始的Apollo模块,而且击败了经过专门培训和经验丰富的人工测试驾驶员。表明端到端横向精度为3?<= 5厘米已实现。此外,我们证明了结果不仅超越了原始的Apollo模块,而且击败了经过专门培训和经验丰富的人工测试驾驶员。
更新日期:2021-05-04
down
wechat
bug