当前位置: X-MOL 学术J. Pet. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental investigation of self-gathering microsphere on profile control in heterogeneous reservoir
Journal of Petroleum Science and Engineering ( IF 5.168 ) Pub Date : 2021-05-04 , DOI: 10.1016/j.petrol.2021.108826
Lifei Dong , Miao Wang , Jie He , Mingchen Ding , Hun Lin

Profile control in heterogeneous reservoir is an improtant work after water breakthrough. The particle systems have the advantages of less dosage and good controllability compared with the polymers, gelling systems, foams and so on. In order to evaluate the effect of profile control in heterogeneous reservoir, a microsphere system with the self-gathering ability is introduced in this work. The static properties related to the injecting and plugging abilites are also described. The dynamic behaviors during microsphere injection and plugging in porous media are discussed by the homogeneous core experiments, the experimental cores have the permeability ranging from 2.05 mD to 2025.94 mD. The effect of profile control by microsphere injection is analyzed from the heterogeneous core experiment. The results show that the microsphere has the properties of good dispersibility, high thermostability, microdilatancy and self-gathering, which are benefit to the microsphere injectiin and plugging. The analysis of injection pressure, injecting distance and residual resistance factor indicates that the microsphere with the average diameter of 100 nm has the good injecting and plugging abilities in the cores with the permeability ranging from 295.43 mD to 708.41 mD. The microsphere has the good profile control ability in heterogeneous core as it can be retained in high permeability layer, enlarge the sweep volume of subsequent water and improve the oil recovery. The self-gathered microsphere could be an efficient technology for profile control in heterogeneous reservoir.



中文翻译:

自聚集微球在非均质油藏剖面控制中的实验研究

非均质油藏调剖是水突破后的一项重要工作。与聚合物,胶凝体系,泡沫等相比,颗粒体系具有剂量少,可控性好的优点。为了评价非均质油藏调剖效果,引入了具有自聚集能力的微球系统。还介绍了与注射和封堵能力有关的静态特性。通过均质岩心实验讨论了微球注入和渗入多孔介质过程中的动力学行为,实验岩心的渗透率范围为2.05 mD至2025.94 mD。从异质岩心实验分析了通过微球注入进行剖面控制的效果。结果表明,微球具有良好的分散性,高的热稳定性,微膨胀性和自聚集性,有利于微球的注射和封堵。注入压力,注入距离和残余阻力因子的分析表明,平均直径为100 nm的微球在岩心中具有良好的注入和堵塞能力,渗透率范围为295.43 mD至708.41 mD。该微球体可以保留在高渗透层中,具有较大的调剖能力,可以增加后续水的驱替量,提高采油率。自聚集微球可能是一种有效的非均质油藏剖面控制技术。有利于微球注射和堵塞。注入压力,注入距离和残余阻力因子的分析表明,平均直径为100 nm的微球在岩心中具有良好的注入和堵塞能力,渗透率范围为295.43 mD至708.41 mD。该微球体可以保留在高渗透层中,具有较大的调剖能力,可以增加后续水的驱替量,提高采油率。自聚集微球可能是一种有效的非均质油藏剖面控制技术。有利于微球注射和堵塞。注入压力,注入距离和残余阻力因子的分析表明,平均直径为100 nm的微球在岩心中具有良好的注入和堵塞能力,渗透率范围为295.43 mD至708.41 mD。该微球体可以保留在高渗透层中,具有较大的调剖能力,可以增加后续水的驱替量,提高采油率。自聚集微球可能是一种有效的非均质油藏剖面控制技术。注入距离和残余电阻因子表明,平均直径为100 nm的微球在岩心中具有良好的注入和堵塞能力,渗透率范围为295.43 mD至708.41 mD。该微球体可以保留在高渗透层中,具有较大的调剖能力,可以增加后续水的驱替量,提高采油率。自聚集微球可能是一种有效的非均质油藏剖面控制技术。注入距离和残余电阻因子表明,平均直径为100 nm的微球在岩心中具有良好的注入和堵塞能力,渗透率范围为295.43 mD至708.41 mD。该微球体可以保留在高渗透层中,具有较大的调剖能力,可以增加后续水的驱替量,提高采油率。自聚集微球可能是一种有效的非均质油藏剖面控制技术。

更新日期:2021-05-12
down
wechat
bug