当前位置: X-MOL 学术J. Inequal. Appl. › 论文详情
Nonlinear \((m,\infty )\)-isometries and \((m,\infty )\)-expansive (contractive) mappings on normed spaces
Journal of Inequalities and Applications ( IF 1.470 ) Pub Date : 2021-05-04 , DOI: 10.1186/s13660-021-02607-w
Aydah Mohammed Ayed Al-Ahmadi

Let S be a self-mapping on a normed space ${\mathcal{X}}$ . In this paper, we introduce three new classes of mappings satisfying the following conditions: $$\begin{aligned} & \max_{ \substack{ 0\leq k \leq m \\ k \text{ even} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert =\max_{ \substack{ 0\leq k\leq m \\ k \text{ odd} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert , \\ & \max_{ \substack{ 0\leq k \leq m \\ k \text{ even} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert \leq \max_{ \substack{ 0\leq k\leq m \\ k \text{ odd} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert , \\ & \max_{ \substack{ 0\leq k \leq m \\ k \text{ even} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert \geq \max_{ \substack{ 0\leq k\leq m \\ k \text{ odd} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert , \end{aligned}$$ for all $x,y\in {\mathcal{X}}$ , where m is a positive integer. We prove some properties of these classes of mappings.

中文翻译:

规范空间上的非线性((m,\ infty)\)-等距和\((m,\ infty)\)-扩张(压缩)映射

令S为规范空间$ {\ mathcal {X}} $上的自映射。在本文中,我们介绍了三种新的满足以下条件的映射类:$$ \ begin {aligned}和\ max_ {\ substack {0 \ leq k \ leq m \\ k \ text {偶数}}} \ bigl \ Vert S ^ {k} xS ^ {k} y \ bigr \ Vert = \ max_ {\ substack {0 \ leq k \ leq m \\ k \ text {奇数}}}} \ bigl \ Vert S ^ {k} xS ^ {k} y \ bigr \ Vert,\\和\ max_ {\ substack {0 \ leq k \ leq m \\ k \ text {even}}} \ bigl \ Vert S ^ {k} xS ^ {k} y \ bigr \ Vert \ leq \ max_ {\ substack {0 \ leq k \ leq m \\ k \ text {奇数}}}} \ bigl \ Vert S ^ {k} xS ^ {k} y \ bigr \ Vert, \\&\ max_ {\ substack {0 \ leq k \ leq m \\ k \ text {偶数}}}} \ bigl \ Vert S ^ {k} xS ^ {k} y \ bigr \ Vert \ geq \ max_ { \ substack {0 \ leq k \ leq m \\ k \ text {奇数}}} \ bigl \ Vert S ^ {k} xS ^ {k} y \ bigr \ Vert,\ end {aligned} $$对于所有$ x,y \ in {\ mathcal {X}} $中,其中m是一个正整数。
更新日期:2021-05-04
全部期刊列表>>
欢迎新作者ACS
聚焦环境污染物
专攻离子通道生理学研究
中国作者高影响力研究精选
虚拟特刊
屿渡论文,编辑服务
浙大
上海中医药大学
苏州大学
江南大学
四川大学
灵长脑研究中心
毛凌玲
南开大学陈瑶
朱如意
中科院
南开大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
华辉
天合科研
x-mol收录
试剂库存
down
wechat
bug