当前位置: X-MOL 学术Represent. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dilogarithm and higher ℒ-invariants for 𝒢ℒ₃(𝐐_{𝐩})
Representation Theory ( IF 0.6 ) Pub Date : 2021-05-03 , DOI: 10.1090/ert/567
Zicheng Qian

Abstract:The primary purpose of this paper is to clarify the relation between previous results in [Ann. Sci. Éc. Norm. Supér. 44 (2011), pp. 43-145], [Amer. J. Math. 141 (2019), pp. 661-703], and [Camb. J. Math. 8 (2020), p. 775-951] via the construction of some interesting locally analytic representations. Let $ E$ be a sufficiently large finite extension of $ \mathbf {Q}_p$ and $ \rho _p$ be a $ p$-adic semi-stable representation $ \mathrm {Gal}(\overline {\mathbf {Q}_p}/\mathbf {Q}_p)\rightarrow \mathrm {GL}_3(E)$ such that the associated Weil-Deligne representation $ \mathrm {WD}(\rho _p)$ has rank two monodromy and the associated Hodge filtration is non-critical. A computation of extensions of rank one $ (\varphi , \Gamma )$-modules shows that the Hodge filtration of $ \rho _p$ depends on three invariants in $ E$. We construct a family of locally analytic representations $ \Sigma ^{\mathrm {min}}(\lambda , \mathscr {L}_1, \mathscr {L}_2, \mathscr {L}_3)$ of $ \mathrm {GL}_3(\mathbf {Q}_p)$ depending on three invariants $ \mathscr {L}_1, \mathscr {L}_2, \mathscr {L}_3 \in E$, such that each representation in the family contains the locally algebraic representation $ \mathrm {Alg}\otimes \mathrm {Steinberg}$ determined by $ \mathrm {WD}(\rho _p)$ (via classical local Langlands correspondence for $ \mathrm {GL}_3(\mathbf {Q}_p)$) and the Hodge-Tate weights of $ \rho _p$. When $ \rho _p$ comes from an automorphic representation $ \pi $ of a unitary group over $ \mathbf {Q}$ which is compact at infinity, we show (under some technical assumption) that there is a unique locally analytic representation in the above family that occurs as a subrepresentation of the Hecke eigenspace (associated with $ \pi $) in the completed cohomology. We note that [Amer. J. Math. 141 (2019), pp. 611-703] constructs a family of locally analytic representations depending on four invariants ( cf. (4) in that publication ) and proves that there is a unique representation in this family that embeds into the Hecke eigenspace above. We prove that if a representation $ \Pi $ in Breuil's family embeds into the Hecke eigenspace above, the embedding of $ \Pi $ extends uniquely to an embedding of a $ \Sigma ^{\mathrm {min}}(\lambda , \mathscr {L}_1, \mathscr {L}_2, \mathscr {L}_3)$ into the Hecke eigenspace, for certain $ \mathscr {L}_1, \mathscr {L}_2, \mathscr {L}_3\in E$ uniquely determined by $ \Pi $. This gives a purely representation theoretical necessary condition for $ \Pi $ to embed into completed cohomology. Moreover, certain natural subquotients of $ \Sigma ^{\mathrm {min}}(\lambda , \mathscr {L}_1, \mathscr {L}_2, \mathscr {L}_3)$ give an explicit complex of locally analytic representations that realizes the derived object $ \Sigma (\lambda , \underline {\mathscr {L}})$ in (1.14) of [Ann. Sci. Éc. Norm.Supér. 44 (2011), pp. 43-145]. Consequently, the locally analytic representation $ \Sigma ^{\mathrm {min}}(\lambda , \mathscr {L}_1, \mathscr {L}_2, \mathscr {L}_3)$ gives a relation between the higher $ \mathscr {L}$-invariants studied in [Amer. J. Math. 141 (2019), pp. 611-703] as well as the work of Breuil and Ding and the $ p$-adic dilogarithm function which appears in the construction of $ \Sigma (\lambda , \underline {\mathscr {L}})$ in [Ann. Sci. Éc. Norm. Supér. 44 (2011), pp. 43-145].


中文翻译:

𝒢ℒ₃(𝐐_{𝐩})的对数和高ℒ不变性

摘要:本文的主要目的是弄清[Ann。科学 Éc。规范。极好的。44(2011),pp.43-145],[Amer。J.数学。141(2019),pp.661-703]和[Camb。J.数学。8(2020),p。[775-951]。设$ E $是的足够大的有限扩展,并且是-adic半稳定表示,以使相关的Weil-Deligne表示具有第二单峰级,并且相关的Hodge过滤不重要。对秩一模的扩展的计算表明的Hodge滤波取决于中的三个不变量。我们构造了的一系列本地分析表示形式 $ \ mathbf {Q} _p $$ \ rho _p $$ p $ $ \ mathrm {Gal}(\ overline {\ mathbf {Q} _p} / \ mathbf {Q} _p)\ rightarrow \ mathrm {GL} _3(E)$ $ \ mathrm {WD}(\ rho _p)$ $(\ varphi,\ Gamma)$$ \ rho _p $$ E $ $ \ Sigma ^ {\ mathrm {min}}(\ lambda,\ mathscr {L} _1,\ mathscr {L} _2,\ mathscr {L} _3)$ $ \ mathrm {GL} _3(\ mathbf {Q} _p)$取决于三个不变量,因此族中的每个表示都包含由(通过经典的本地Langlands对应)和的Hodge-Tate权重确定的局部代数表示。当来自一个在无穷远处紧凑的compact群的自构表示时,我们证明(在某种技术假设下)上述族中存在唯一的局部解析表示,该表示作为Hecke本征空间的子表示(与 $ \ mathscr {L} _1,\ mathscr {L} _2,\ mathscr {L} _3 \ in E $ $ \ mathrm {Alg} \ otimes \ mathrm {Steinberg} $ $ \ mathrm {WD}(\ rho _p)$ $ \ mathrm {GL} _3(\ mathbf {Q} _p)$$ \ rho _p $$ \ rho _p $$ \ pi $ $ \ mathbf {Q} $$ \ pi $)。我们注意到[Amer。J.数学。141(2019),pp。611-703]构造了一个依赖于四个不变量的局部解析表示形式的族(请参阅该出版物的(4)),并证明该族中有一个独特的表示形式嵌入到上面的Hecke本征空间中。我们证明,如果$ \ Pi $布劳伊(Breuil)家族中的一个表示嵌入到上面的Hecke本征空间中,则的嵌入$ \ Pi $将唯一地扩展为a嵌入到Hecke本征空间中,对于的某些唯一确定。这为嵌入完整的同调学提供了一个纯粹的代表理论必要条件。此外, $ \ Sigma ^ {\ mathrm {min}}(\ lambda,\ mathscr {L} _1,\ mathscr {L} _2,\ mathscr {L} _3)$ $ \ mathscr {L} _1,\ mathscr {L} _2,\ mathscr {L} _3 \ in E $$ \ Pi $$ \ Pi $ $ \ Sigma ^ {\ mathrm {min}}(\ lambda,\ mathscr {L} _1,\ mathscr {L} _2,\ mathscr {L} _3)$给出一个局部解析表示的显式复合体,该复合体实现了[Ann。[1.1] 科学 Éc。苏佩尔 44(2011),第43-145页]。因此,局部解析表示法给出了在[Amer。J.数学。141(2019),第611-703]以及布勒伊和丁和的工作出现在建设进制dilogarithm函数在[安。科学 Éc。规范。极好的。44(2011),第43-145页]。 $ \ Sigma(\ lambda,\下划线{\ mathscr {L}})$ $ \ Sigma ^ {\ mathrm {min}}(\ lambda,\ mathscr {L} _1,\ mathscr {L} _2,\ mathscr {L} _3)$ $ \ mathscr {L} $$ p $ $ \ Sigma(\ lambda,\下划线{\ mathscr {L}})$
更新日期:2021-05-03
down
wechat
bug