当前位置: X-MOL 学术J. Agron. Crop Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transcriptome sequencing revealed the molecular mechanism of response of pearl millet root to heat stress
Journal of Agronomy and Crop Science ( IF 3.5 ) Pub Date : 2021-05-02 , DOI: 10.1111/jac.12496
Min Sun 1 , Chuang Lin 1 , Ailing Zhang 1 , Xiaoshan Wang 1 , Haidong Yan 2 , Imran Khan 1 , Bingchao Wu 1 , Guangyan Feng 1 , Gang Nie 1 , Xinquan Zhang 1 , Linkai Huang 1
Affiliation  

High temperature is an environmental factor that affects plant growth and productivity. It is very important to study the changes in plant roots under heat stress (HS) to discover key heat response genes and improve the heat tolerance of plants. Pearl millet is utilized for food, livestock feed and bioenergy materials and is highly tolerant to HS. However, research on the response mechanism of pearl millet roots to HS is limited. In this study, we performed physiological index determination and RNA-seq on the roots of pearl millet under HS (40/35°C) at 1, 3 and 7 hr. The number of differentially expressed genes (DEGs) at 3 hr was the highest (8,479), followed by 1 hr (6,250) and 7 hr (5,167). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs revealed that the endoplasmic reticulum (ER) stress and trehalose synthesis pathways were the major responsive pathways after 1 and 3 hr of HS. This study revealed the underlying molecular mechanism of root response to high temperature stress in pearl millet and provided useful information for identifying heat-resistant genes and breeding heat-resistant plants.

中文翻译:

转录组测序揭示珍珠粟根对热应激反应的分子机制

高温是影响植物生长和生产力的环境因素。研究热胁迫下植物根系的变化,对于发现关键的热响应基因,提高植物的耐热性具有重要意义。珍珠粟用于食品、牲畜饲料和生物能源材料,对 H2S 具有高度耐受性。然而,关于珍珠粟根对HS的反应机制的研究是有限的。在本研究中,我们在 HS (40/35°C) 条件下于 1、3 和 7 小时对珍珠粟的根部进行了生理指标测定和 RNA-seq。3 小时时差异表达基因 (DEG) 的数量最高 (8,479),其次是 1 小时 (6,250) 和 7 小时 (5,167)。DEG 的基因本体论 (GO) 和京都基因和基因组百科全书 (KEGG) 分析表明,内质网 (ER) 应激和海藻糖合成途径是 HS 1 和 3 小时后的主要反应途径。该研究揭示了珍珠粟根系对高温胁迫响应的潜在分子机制,为鉴定耐热基因和培育耐热植物提供了有用的信息。
更新日期:2021-05-02
down
wechat
bug