当前位置: X-MOL 学术ICMx › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Haptoglobin treatment prevents cell-free hemoglobin exacerbated mortality in experimental rat sepsis
Intensive Care Medicine Experimental Pub Date : 2021-05-03 , DOI: 10.1186/s40635-021-00387-7
Christian A. Schaer , Victor Jeger , Thomas Gentinetta , Donat R. Spahn , Florence Vallelian , Alain Rudiger , Dominik J. Schaer

Sepsis is a dysregulated host response to infection leading to organ dysfunction, organ failure, and death. Multiple mechanisms promote hemolysis during sepsis, such as complement activation, disseminated intravascular coagulation, hemolytic pathogens, sepsis-induced erythrocyte dysfunction, blood transfusion, and medical procedures with extracorporeal circulation (e.g., renal replacement therapy) [1]. Clinical observations suggested that hemolysis with increased cell-free hemoglobin (CFHb) in plasma correlated with reduced survival in sepsis patients [2,3,4]. CFHb is a toxin, which may worsen sepsis pathophysiology by nitric oxide depletion, oxidative tissue injury, activation of coagulation and innate immune pathways, and as an iron source for pathogens [5]. The acute phase protein haptoglobin is the archetypical Hb scavenger in plasma and irreversibly neutralizes the toxicity of bound Hb [1].

Here, we performed a prospective, randomized, blinded animal study to provide direct experimental evidence that CFHb exacerbates sepsis mortality and test whether haptoglobin administration could revert this potentially detrimental adverse effect of hemolysis. For this, we used a fluid resuscitated fecal peritonitis model in awake rats that we have characterized in detail earlier (Fig. 1a) [6]. We first validated an Hb-administration protocol in 36 septic rats randomized to saline, CFHb, or Hb–haptoglobin infusion. Three hours after a bolus followed by continuous infusion, the mean total Hb concentrations in plasma were 5.4 μM (SD ± 3.2 μM) in the saline group and 30.4 μM (SD ± 17.3 μM) in the Hb group (Fig. 1b). These data confirmed that our infusion protocol resulted in plasma concentrations within the range of CFHb observed in patients with severe sepsis [2, 4]. Co-administration of human plasma-derived haptoglobin prevented Hb's renal clearance, resulting in higher concentrations than in the CFHb group (54.7 μM ± 63.0 μM). We determined the fractions of CFHb, Hb–haptoglobin complexes, and heme-protein adducts by size-exclusion chromatography. CFHb and heme-protein adducts eluting in the albumin region remained suppressed when haptoglobin was administered concomitantly with CFHb. This confirms that Hb remains stabilized in the Hb–haptoglobin complex for prolonged periods in circulation and that the complex efficiently prevents Hb degradation and heme release from CFHb [7, 8].

Fig. 1
figure1

Experimental setup and hemoglobin infusion protocol validation. a Setup scheme of the studies: a catheter was placed into the jugular vein and a telemetry ECG electrode was placed subcutaneously the day before the experiment. On the next day, the animals were randomized to a treatment group. Fecal slurry was injected i.p at T0h to induce sepsis. 4 h later, the animals were treated with ceftriaxone and a continuous saline infusion was started to provide fluid resuscitation. At the same time (T4h), we administered a bolus followed by continuous-rate infusion of saline, Hb or Hb–haptoglobin complexes for 24 h (Hb bolus = 16 mg, Hb continuous rate infusion = 15 mg/h, haptoglobin was dosed at an iso-stoichiometric concentration with Hb). b Besides the mortality study, we performed a separate study to determine plasma concentration of total Hb by spectrophotometry (left panel black symbols, indicated in heme equivalents), and plasma concentrations of CFHb, Hb–haptoglobin complex and hemoprotein by size-exclusion chromatography (gray symbols). Plasma was collected 3 h after starting the Hb or Hb–haptoglobin infusion (T7h). p values: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001

Full size image

In the main study, we randomized 54 septic Wistar rats to treatment with saline, CFHb, or Hb–haptoglobin. One animal randomized to the saline group had to be excluded from the study, because the intravenous catheter was dislocated during the experiment. In addition, five non-septic animals were infused with CFHb to exclude acute Hb toxicity in healthy animals. After fecal slurry injection, tachycardia developed in all treatment groups consistent with a systemic inflammatory response (i.e., sepsis) (Fig. 2a). The exact timepoint of animal death was determined based on ECG telemetry recordings. The survival data provided evidence for a significantly higher mortality in the group of septic rats infused with CFHb compared to the septic animals infused with only saline (61% versus 12%; p = 0.0066). Co-administration of haptoglobin with CFHb improved mortality to 17%, which was not significantly different from the saline infusion group (12%) (Fig. 2b).

Fig. 2
figure2

Mortality studies in septic rats. Septic rats were randomized to treatment with a bolus followed by a continuous infusion of saline, Hb, or Hb–haptoglobin over 24 h. All investigators were blinded for the treatment group. An additional group of non-septic rats was infused with Hb to exclude toxicity in healthy animals. a Heart rate recordings (mean ± S.E.M) during the 48 h experiments. b Kaplan–Meier survival curves. Results of the statistical analysis are provided in the table (c). Survival proportions (Kaplan–Meier) were compared using a two-tailed Gehan–Breslow–Wilcoxon test. The familywise significance level of 0.05 was divided by the number of all possible comparisons (n = 6), resulting in a Bonferroni-corrected multiple-comparison significance level of 0.00833. [GraphPad Prism software version 8.0 (GraphPad Software, San Diego, CA, USA)]. Numbers of dead animals/total animals per group are given in parentheses

Full size image

Previous reports demonstrated that blood transfusion-induced hemolysis caused excess mortality in a canine model of S. aureus pneumonia [5]. In the same model, administration of a haptoglobin concentrate improved shock, lung injury, and survival, suggesting that Hb-scavenging neutralized the adverse effects of CFHb [5]. With our model, we now provide direct evidence that purified Hb administered to reach clinically relevant plasma concentrations acts as a toxin during hemolysis, mimicking the adverse effect of intrinsic hemolysis. Our data collectively suggest that CFHb is a contributor to adverse sepsis outcomes and may provide a rationale for therapeutic haptoglobin supplementation as a strategy to improve clinical sepsis management.

Original data are available upon reasonable request from the corresponding author.

  1. 1.

    Buehler PW, Humar R, Schaer DJ (2020) Haptoglobin therapeutics and compartmentalization of cell-free hemoglobin toxicity. Trends Mol Med 26(7):683–697

    CAS Article Google Scholar

  2. 2.

    Janz DR, Bastarache JA, Peterson JF, Sills G, Wickersham N, May AK et al (2013) Association between cell-free hemoglobin, acetaminophen, and mortality in patients with sepsis: an observational study. Crit Care Med 41:784–790

    CAS Article Google Scholar

  3. 3.

    Janz DR, Bastarache JA, Sills G, Wickersham N, May AK, Bernard GR et al (2013) Association between haptoglobin, hemopexin and mortality in adults with sepsis. Crit Care. 17(6):R272

    Article Google Scholar

  4. 4.

    Adamzik M, Hamburger T, Petrat F, Peters J, de Groot H, Hartmann M (2012) Free hemoglobin concentration in severe sepsis: methods of measurement and prediction of outcome. Crit Care 16(4):R125

    Article Google Scholar

  5. 5.

    Remy KE, Cortés-Puch I, Solomon SB, Sun J, Pockros BM, Feng J et al (2018) Haptoglobin improves shock, lung injury, and survival in canine pneumonia. JCI Insight 3(18):e123013

    Article Google Scholar

  6. 6.

    Rudiger A, Jeger V, Arrigo M, Schaer CA, Hildenbrand FF, Arras M et al (2018) Heart rate elevations during early sepsis predict death in fluid-resuscitated rats with fecal peritonitis. Intensive Care Med Exp 6:28

    Article Google Scholar

  7. 7.

    Boretti FS, Buehler PW, Dgnillo F, Kluge K, Glaus T, Butt OI et al (2009) Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and guinea pigs. J Clin Investig. 119:2271–2280

    CAS PubMed Google Scholar

  8. 8.

    Deuel JW, Vallelian F, Schaer CA, Puglia M, Buehler PW, Schaer DJ (2015) Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity. Free Radic Biol Med 89:931–943

    CAS Article Google Scholar

Download references

Plasma-derived human haptoglobin (mixed phenotype) was provided by CSL-Behring, Bern, Switzerland.

The study was supported by Innosuisse (Grant number 19300.1 PFSL-L) and the Swiss National Science Foundation (Grant number 310030_197823).

Affiliations

  1. Division of Internal Medicine, University and University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland

    Christian A. Schaer, Victor Jeger, Florence Vallelian & Dominik J. Schaer

  2. Institute of Anesthesiology, University and University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland

    Christian A. Schaer, Victor Jeger & Donat R. Spahn

  3. CSL Behring AG, Bern, Switzerland

    Thomas Gentinetta

  4. Department of Medicine, Hospital Limmattal, Urdorferstrasse 100, 8952, Schlieren, Switzerland

    Alain Rudiger

Authors
  1. Christian A. SchaerView author publications

    You can also search for this author in PubMed Google Scholar

  2. Victor JegerView author publications

    You can also search for this author in PubMed Google Scholar

  3. Thomas GentinettaView author publications

    You can also search for this author in PubMed Google Scholar

  4. Donat R. SpahnView author publications

    You can also search for this author in PubMed Google Scholar

  5. Florence VallelianView author publications

    You can also search for this author in PubMed Google Scholar

  6. Alain RudigerView author publications

    You can also search for this author in PubMed Google Scholar

  7. Dominik J. SchaerView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

CAS designed the study, performed experiments, analyzed data, wrote the paper; VJ designed the study, performed experiments, analyzed data; TG analyzed plasma samples; DRS and AR designed the study; FV wrote the paper; DJS designed the study, analyzed data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dominik J. Schaer.

Ethical approval and consent to participate

This animal study was approved by the Veterinary Office of the Kanton Zurich, Switzerland.

Consent for publication

Not applicable for this animal study.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Schaer, C.A., Jeger, V., Gentinetta, T. et al. Haptoglobin treatment prevents cell-free hemoglobin exacerbated mortality in experimental rat sepsis. ICMx 9, 22 (2021). https://doi.org/10.1186/s40635-021-00387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s40635-021-00387-7



中文翻译:

肝红蛋白治疗可防止无细胞血红蛋白加重实验性败血症的死亡率

败血症是宿主对感染的失调反应,导致器官功能障碍,器官衰竭和死亡。多种机制促进败血症期间的溶血,例如补体激活,弥散性血管内凝血,溶血性病原体,败血症诱导的红细胞功能障碍,输血和体外循环的医疗程序(例如肾脏替代疗法)[1]。临床观察表明,血浆中无细胞血红蛋白(CFHb)增加的溶血与脓毒症患者的存活率降低相关[2,3,4]。CFHb是一种毒素,可能通过消耗一氧化氮,氧化组织损伤,激活凝血和先天性免疫途径而使脓毒症的病理生理学恶化,并且是病原体的铁源[5]。

在这里,我们进行了一项前瞻性,随机,盲目的动物研究,以提供直接的实验证据,证明CFHb会加重败血症的死亡率,并测试触珠蛋白的施用是否可以逆转溶血的这种潜在有害不利影响。为此,我们在清醒的大鼠中使用了液体复苏的粪便腹膜炎模型,我们已经对其进行了较早的表征(图1a)[6]。我们首先在随机分配给生理盐水,CFHb或Hb-触珠蛋白输注的36只脓毒症大鼠中验证了Hb的给药方案。推注然后连续输注三个小时后,生理盐水组血浆总Hb平均浓度为5.4μM(SD±3.2μM),Hb组血浆平均Hb浓度为30.4μM(SD±17.3μM)(图1b)。这些数据证实,我们的输注方案导致患有严重败血症的患者的血浆浓度在CFHb范围内[2,4]。人血浆来源的触珠蛋白的共同给药可防止Hb的肾脏清除,从而导致其浓度高于CFHb组(54.7μM±63.0μM)。我们通过尺寸排阻色谱法确定了CFHb,Hb-触珠蛋白复合物和血红蛋白加合物的比例。当触珠蛋白与CFHb并用时,在白蛋白区域洗脱的CFHb和血红蛋白加合物仍被抑制。这证实了血红蛋白在血红蛋白-珠蛋白复合物中可以长期稳定地保持稳定,并且该复合物有效地防止了血红蛋白降解和血红素从CFHb中释放[7,8]。人血浆来源的触珠蛋白的共同给药可防止Hb的肾脏清除,从而导致其浓度高于CFHb组(54.7μM±63.0μM)。我们通过尺寸排阻色谱法确定了CFHb,Hb-触珠蛋白复合物和血红蛋白加合物的比例。当触珠蛋白与CFHb并用时,在白蛋白区域洗脱的CFHb和血红蛋白加合物仍被抑制。这证实了血红蛋白在血红蛋白-珠蛋白复合物中可以长期稳定地保持稳定,并且该复合物有效地防止了血红蛋白降解和血红素从CFHb中释放[7,8]。人血浆来源的触珠蛋白的共同给药可防止Hb的肾脏清除,从而导致其浓度高于CFHb组(54.7μM±63.0μM)。我们通过大小排阻色谱法确定了CFHb,Hb-触珠蛋白复合物和血红蛋白加合物的分数。当触珠蛋白与CFHb并用时,在白蛋白区域洗脱的CFHb和血红蛋白加合物仍被抑制。这证实了血红蛋白在血红蛋白-珠蛋白复合物中可以长期稳定地保持稳定,并且该复合物有效地防止了血红蛋白降解和血红素从CFHb中释放[7,8]。尺寸排阻色谱法检测血红蛋白加合物。当触珠蛋白与CFHb并用时,在白蛋白区域洗脱的CFHb和血红蛋白加合物仍被抑制。这证实了血红蛋白在血红蛋白-珠蛋白复合物中可以长期稳定地保持稳定,并且该复合物有效地防止了血红蛋白降解和血红素从CFHb中释放[7,8]。尺寸排阻色谱法检测血红蛋白加合物。当触珠蛋白与CFHb并用时,在白蛋白区域洗脱的CFHb和血红蛋白加合物仍被抑制。这证实了血红蛋白在血红蛋白-珠蛋白复合物中可以长期稳定地保持稳定,并且该复合物有效地防止了血红蛋白降解和血红素从CFHb中释放[7,8]。

图。1
图1

实验装置和血红蛋白输注方案验证。研究的设置方案:在实验前一天将导管插入颈静脉,将遥测ECG电极皮下放置。第二天,将动物随机分为治疗组。在T 0h腹腔注射粪便浆液以引起败血症。4小时后,用头孢曲松治疗动物并开始连续输注盐水以提供液体复苏。在同一时间(T 4h),我们进行大剂量推注,然后连续速率输注盐水,Hb或Hb-触珠蛋白复合物24小时(Hb推注= 16 mg,Hb连续率输注= 15 mg / h,触珠蛋白为以等化学计量的浓度添加Hb)。b除死亡率研究外,我们还进行了另一项研究,通过分光光度法(左面板黑色符号,以血红素当量表示)测定总血红蛋白的血浆浓度,通过尺寸排阻色谱法测定血红蛋白,血红蛋白-触珠蛋白复合物和血蛋白的血浆浓度(灰色符号)。开始输注Hb或Hb-触珠蛋白3小时后(T 7h)收集血浆。p值:* <0.05,** <0.01,*** <0.001,**** <0.0001

全尺寸图片

在主要研究中,我们将54只脓毒症Wistar大鼠随机分为生理盐水,CFHb或Hb-触珠蛋白治疗。必须将随机分配到盐水组的一只动物排除在研究之外,因为在实验过程中静脉导管被脱位。此外,向五只非败血性动物注入CFHb,以排除健康动物中的急性Hb毒性。粪便注射后,所有治疗组均出现心动过速,与全身性炎症反应(即败血症)一致(图2a)。根据ECG遥测记录确定动物死亡的确切时间点。存活数据提供了证据,与仅注入盐水的败血症动物相比,注入CFHb的败血症大鼠组的死亡率显着更高(61%比12%;p = 0.0066)。将触珠蛋白与CFHb并用可使死亡率提高至17%,与盐水输注组(12%)无显着差异(图2b)。

图2
图2

败血症大鼠的死亡率研究。脓毒症大鼠随机接受大剂量治疗,然后在24小时内连续输注盐水,Hb或Hb-触珠蛋白。所有研究者都对治疗组视而不见。另一组非败血性大鼠注射了Hb,以排除健康动物的毒性。一个心率记录(平均值±SEM)的48个小时实验期间。b Kaplan–Meier生存曲线。统计分析的结果在表(c)中提供。使用两尾Gehan-Breslow-Wilcoxon检验比较生存比例(Kaplan-Meier)。族的显着性水平0.05除以所有可能的比较数(n = 6),则经Bonferroni校正的多重比较显着性水平为0.00833。[GraphPad Prism软件8.0版(GraphPad软件,美国加利福尼亚州圣地亚哥)]。每组中死动物/总动物数在括号中给出

全尺寸图片

先前的报道表明,输血引起的溶血在金黄色葡萄球菌肺炎犬模型中导致过多的死亡率[5]。在同一模型中,施用触珠蛋白浓缩液可改善休克,肺损伤和生存,这表明清除Hb可中和CFHb的不良反应[5]。利用我们的模型,我们现在提供直接的证据,即在溶血过程中,纯化的Hb给药达到临床相关血浆浓度可作为毒素,模仿内在溶血的不利影响。我们的数据共同表明CFHb是导致败血症不良后果的因素,并可能为治疗性结合珠蛋白的补充提供理论依据,以作为改善临床败血症管理的策略。

应相应作者的合理要求,可提供原始数据。

  1. 1。

    Buehler PW,Humar R,Schaer DJ(2020)血红蛋白疗法和无细胞血红蛋白毒性的区室化。趋势摩尔医学26(7):683–697

    CAS文章Google学术搜索

  2. 2。

    Janz DR,Bastarache JA,Peterson JF,Sills G,Wickersham N,May AK等人(2013)无细胞血红蛋白,对乙酰氨基酚与败血症患者死亡率之间的关联:一项观察性研究。Crit Care Med 41:784–790

    CAS文章Google学术搜索

  3. 3。

    Janz DR,Bastarache JA,Sills G,Wickersham N,May AK,Bernard GR等人(2013)脓毒症成人触珠蛋白,血红蛋白与死亡率之间的关联。暴击护理。17(6):R272

    文章Google学术搜索

  4. 4,

    Adamzik​​ M,Hamburger T,Petrat F,Peters J,de Groot H,Hartmann M(2012)严重脓毒症中的游离血红蛋白浓度:测量和结果预测方法。暴击护理16(4):R125

    文章Google学术搜索

  5. 5,

    Remy KE,Cortés-PuchI,Solomon SB,Sun J,Pockros BM,Feng J等人(2018)肝红蛋白可改善犬肺炎的休克,肺损伤和存活率。JCI透视3(18):e123013

    文章Google学术搜索

  6. 6,

    Rudiger A,Jeger V,Arrigo M,Schaer CA,Hildenbrand FF,Arras M et al(2018)败血症早期的心率升高预示着液体复苏的粪便性腹膜炎大鼠死亡。重症监护医学Exp 6:28

    文章Google学术搜索

  7. 7

    Boretti FS,Buehler PW,Dgnillo F,Kluge K,Glaus T,Butt OI等人(2009)螯合触珠蛋白复合物中的细胞外血红蛋白降低了其在狗和豚鼠中的高血压和氧化作用。J临床研究。119:2271–2280

    CAS PubMed Google学术搜索

  8. 8。

    Deuel JW,Vallelian F,Schaer CA,Puglia M,Buehler PW,Schaer DJ(2015)触珠蛋白和血红蛋白的不同靶标特异性定义了针对血管血红蛋白毒性的序贯保护系统。免费Radic Biol Med 89:931–943

    CAS文章Google学术搜索

下载参考

血浆来源的人触珠蛋白(混合表型)由瑞士伯尔尼的CSL-Behring提供。

这项研究得到了Innosuisse(批准号为19300.1 PFSL-L)和瑞士国家科学基金会(批准号为310030_197823)的支持。

隶属关系

  1. 苏黎世大学附属大学医院内科,瑞士苏黎世Raemistrasse 100,8091

    克里斯蒂安·A·舍尔,维克多·杰格,佛罗伦萨·瓦莱利亚和多米尼克·J·舍尔

  2. 苏黎世大学附属大学医院麻醉研究所,瑞士苏黎世Raemistrasse 100,8091

    克里斯蒂安·A·舍尔(Christian A.Schaer),维克多·杰格(Victor Jeger)和多纳特·R·斯潘(Donat R.Spahn)

  3. CSL Behring AG,伯尔尼,瑞士

    托马斯·金蒂内塔

  4. 瑞士Schlieren,Urdorferstrasse 100,1995年,利马塔尔医院内科

    阿兰·鲁迪格(Alain Rudiger)

作者
  1. 克里斯蒂安·A·舍尔(Christian A.Schaer)查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  2. Victor Jeger查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  3. Thomas Gentinetta查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  4. Donat R. Spahn查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  5. 佛罗伦萨·瓦莱里安(Florence Vallelian)查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  6. 阿兰·鲁迪格(Alain Rudiger)查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  7. Dominik J. Schaer查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

会费

CAS设计研究,进行实验,分析数据,撰写论文;VJ设计了研究,进行了实验,分析了数据;TG分析血浆样品;DRS和AR设计了研究;FV写了这篇论文;DJS设计了研究,分析了数据。所有作者阅读并认可的终稿。

通讯作者

对应于Dominik J. Schaer。

道德上的同意和参与同意

这项动物研究得到瑞士苏黎世坎顿兽医局的批准。

同意发表

不适用于此动物研究。

利益争夺

作者宣称他们没有竞争利益。

发行人的便条

对于已发布地图和机构隶属关系中的管辖权主张,Springer Nature保持中立。

开放存取本文是根据知识共享署名4.0国际许可许可的,该许可允许以任何媒介或格式使用,共享,改编,分发和复制,只要您对原始作者和出处提供适当的信誉,即可提供链接到知识共享许可,并指出是否进行了更改。本文的图像或其他第三方材料包含在该文章的知识共享许可中,除非在该材料的信用额度中另有说明。如果该材料未包含在该文章的创用CC许可中,并且您的预期用途未得到法律法规的许可或超出了许可的用途,则您将需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。

转载和许可

通过CrossMark验证货币和真实性

引用本文

加利福尼亚州舍尔(Schaer),弗吉尼亚州杰格(Veger),T。等人的Gentinetta 肝红蛋白治疗可防止无细胞血红蛋白加重实验性败血症的死亡率。ICMx 9, 22(2021)。https://doi.org/10.1186/s40635-021-00387-7

下载引文

  • 收到

  • 已接受

  • 发表时间

  • DOI https //doi.org/10.1186/s40635-021-00387-7

更新日期:2021-05-03
down
wechat
bug