当前位置: X-MOL 学术J. Polym. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simvastatin-loaded graphene oxide embedded in polycaprolactone-polyurethane nanofibers for bone tissue engineering applications
Journal of Polymer Engineering ( IF 2 ) Pub Date : 2021-05-01 , DOI: 10.1515/polyeng-2020-0301
Hessam Rezaei 1, 2 , Mostafa Shahrezaee 1 , Marziyeh Jalali Monfared 3 , Sonia Fathi Karkan 4, 5, 6 , Robabehbeygom Ghafelehbashi 7
Affiliation  

Here, the role of simvastatin-loaded graphene oxide embedded in polyurethane-polycaprolactone nanofibers for bone tissue engineering has been investigated. The scaffolds were physicochemically and mechanically characterized, and obtained polymeric composites were used as MG-63 cell culture scaffolds. The addition of graphene oxide-simvastatin to nanofibers generates a homogeneous and uniform microstructure as well as a reduction in fiber diameter. Results of water-scaffolds interaction indicated higher hydrophilicity and absorption capacity as a function of graphene oxide addition. Scaffolds’ mechanical properties and physical stability improved after the addition of graphene oxide. Inducing bioactivity after the addition of simvastatin-loaded graphene oxide terminated its capability for hard tissue engineering application, evidenced by microscopy images and phase characterization. Nanofibrous scaffolds could act as a sustained drug carrier. Using the optimal concentration of graphene oxide-simvastatin is necessary to avoid toxic effects on tissue. Results show that the scaffolds are biocompatible to the MG-63 cell and support alkaline phosphatase activity, illustrating their potential use in bone tissue engineering. Briefly, graphene-simvastatin-incorporated in polymeric nanofibers was developed to increase bioactive components’ synergistic effect to induce more bioactivity and improve physical and mechanical properties as well as in vitro interactions for better results in bone repair.

中文翻译:

埋在聚己内酯-聚氨酯纳米纤维中的载有辛伐他汀的氧化石墨烯,用于骨组织工程应用

在这里,已经研究了在聚氨酯-聚己内酯纳米纤维中嵌入辛伐他汀的氧化石墨烯在骨组织工程中的作用。对该支架进行物理化学和机械表征,并将获得的聚合物复合材料用作MG-63细胞培养支架。将氧化石墨烯-辛伐他汀添加到纳米纤维中会产生均一且均匀的微观结构,并减小纤维直径。水-支架相互作用的结果表明,较高的亲水性和吸收能力是氧化石墨烯添加的函数。加入氧化石墨烯后,脚手架的机械性能和物理稳定性得到改善。加入辛伐他汀负载的氧化石墨烯后,诱导生物活性终止了其在硬组织工程应用中的能力,由显微镜图像和相位表征证明。纳米纤维支架可以充当持续的药物载体。为了避免对组织的毒性作用,必须使用氧化石墨烯-辛伐他汀的最佳浓度。结果表明该支架与MG-63细胞具有生物相容性,并支持碱性磷酸酶活性,说明它们在骨组织工程中的潜在用途。简而言之,开发了将石墨烯-辛伐他汀掺入聚合物纳米纤维中,以增强生物活性成分的协同作用,以诱导更多的生物活性,并改善物理和机械性能以及体外相互作用,从而获得更好的骨修复效果。为了避免对组织的毒性作用,必须使用氧化石墨烯-辛伐他汀的最佳浓度。结果表明该支架与MG-63细胞具有生物相容性,并支持碱性磷酸酶活性,说明它们在骨组织工程中的潜在用途。简而言之,开发了将石墨烯-辛伐他汀掺入聚合物纳米纤维中,以增强生物活性成分的协同作用,以诱导更多的生物活性,并改善物理和机械性能以及体外相互作用,从而获得更好的骨修复效果。为了避免对组织的毒性作用,必须使用氧化石墨烯-辛伐他汀的最佳浓度。结果表明该支架与MG-63细胞具有生物相容性,并支持碱性磷酸酶活性,说明它们在骨组织工程中的潜在用途。简而言之,开发了将石墨烯-辛伐他汀掺入聚合物纳米纤维中,以增强生物活性成分的协同作用,以诱导更多的生物活性,并改善物理和机械性能以及体外相互作用,从而获得更好的骨修复效果。
更新日期:2021-04-30
down
wechat
bug