当前位置: X-MOL 学术Mater. Today Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrahigh current density and fatigue stability in flexible energy harvester by designing delivery paths
Materials Today Physics ( IF 11.5 ) Pub Date : 2021-04-30 , DOI: 10.1016/j.mtphys.2021.100424
Xin Gao , Mupeng Zheng , Xiaodong Yan , Mankang Zhu , Yudong Hou

Flexible piezoelectric energy harvesters that efficiently convert mechanical energy into electrical energy have been extensively studied due to their great application potential in low-power wearable electronics and self-powered sensors. However, the low current output and poor thermal fatigue resistance severely restrict their practical applications. Here, we propose a new strategy to simultaneously improve the current density and thermal conductivity of the flexible piezocomposites (PCs) by designing delivery paths. High-quality (Ba0·85Ca0.15) (Ti0·90Zr0.10)O3/copper nanorods/polydimethylsiloxane (BCZT/Cu NRs/PDMS) PCs with a novel co-chained structure prepared using a well-suited technique of dielectrophoresis were reported for the first time. The BCZT particles and Cu NRs aligned in same chains throughout PDMS matrix results in an efficient delivery path both for induced charge transfer and heat dissipation, thus leading to ultrahigh current density (4.7 μA/cm2) and thermal conductivity (0.31 W/(m · K)). Further, a faster charging speed and a dramatically fatigue stability were realized in the co-chained PCs. Our work is expected to provide a potential solution for simultaneously enhancing current density and heat dissipation for a variety of composites in the field of flexible energy harvesting.



中文翻译:

通过设计输送路径,使柔性能量采集器具有超高的电流密度和疲劳稳定性

有效地将机械能转换为电能的柔性压电能量收集器,由于其在低功率可穿戴电子设备和自供电传感器中的巨大应用潜力,已经得到了广泛的研究。然而,低电流输出和差的耐热疲劳性严重地限制了它们的实际应用。在这里,我们提出了一种新的策略,通过设计传输路径来同时提高柔性压电复合材料(PC)的电流密度和导热系数。高质量(Ba 0·85 Ca 0.15)(Ti 0·90 Zr 0.10)O 3首次报道了使用新型介电泳技术制备的具有新型共链结构的PC /铜纳米棒/聚二甲基硅氧烷(BCZT / Cu NRs / PDMS)。整个PDMS矩阵中的BCZT颗粒和Cu NRs排列在同一链中,为感应电荷转移和散热提供了有效的传递途径,从而导致超高电流密度(4.7μA/ cm 2)和热导率(0.31 W /(m ·K))。此外,在共链式PC中实现了更快的充电速度和显着的疲劳稳定性。我们的工作有望为灵活的能量收集领域中的各种复合材料提供同时提高电流密度和散热的潜在解决方案。

更新日期:2021-05-07
down
wechat
bug