当前位置: X-MOL 学术Phys. Rev. Research › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analytical solution for time integrals in diagrammatic expansions: Application to real-frequency diagrammatic Monte Carlo
Physical Review Research Pub Date : 2021-04-29 , DOI: 10.1103/physrevresearch.3.023082
J. Vučičević , P. Stipsić , M. Ferrero

Recent years have seen a revived interest in the diagrammatic Monte Carlo (DiagMC) methods for interacting fermions on a lattice. A promising recent development allows one to now circumvent the analytical continuation of dynamic observables in DiagMC calculations within the Matsubara formalism. This is made possible by symbolic algebra algorithms, which can be used to analytically solve the internal Matsubara frequency summations of Feynman diagrams. In this paper, we take a different approach and show that it yields improved results. We present a closed-form analytical solution of imaginary-time integrals that appear in the time-domain formulation of Feynman diagrams. We implement and test a DiagMC algorithm based on this analytical solution and show that it has numerous significant advantages. Most importantly, the algorithm is general enough for any kind of single-time correlation function series, involving any single-particle vertex insertions. Therefore, it readily allows for the use of action-shifted schemes, aimed at improving the convergence properties of the series. By performing a frequency-resolved action-shift tuning, we are able to further improve the method and converge the self-energy in a nontrivial regime, with only 3–4 perturbation orders. Finally, we identify time integrals of the same general form in many commonly used Monte Carlo algorithms and therefore expect a broader usage of our analytical solution.

中文翻译:

图解展开式中时间积分的解析解:在实数频率图解式蒙特卡洛中的应用

近年来,人们开始对图解式蒙特卡洛(DiagMC)方法产生兴趣,该方法用于在晶格上相互作用费米子。最近的一项有希望的发展使人们现在可以规避松原形式主义中DiagMC计算中动态可观察物的分析连续性。这可以通过符号代数算法实现,该算法可用于解析求解Feynman图的内部Matsubara频率求和。在本文中,我们采用了不同的方法,并表明它产生了改进的结果。我们提出了出现在Feynman图的时域公式中的虚时积分的闭式解析解。我们基于此分析解决方案实现并测试了DiagMC算法,并证明了它具有许多重要的优点。最重要的是,该算法对于涉及任何单粒子顶点插入的任何类型的单次相关函数系列足够通用。因此,它很容易允许使用旨在改善系列收敛性的动作平移方案。通过执行频率分辨的动作移位调谐,我们能够进一步改进该方法并在非平凡的状态下将自身能量收敛到仅3–4个扰动阶数。最后,我们在许多常用的蒙特卡洛算法中确定了相同形式的时间积分,因此期望我们的分析解决方案得到更广泛的应用。通过执行频率分辨的动作移位调谐,我们能够进一步改进该方法并在非平凡的状态下将自身能量收敛到仅3–4个扰动阶数。最后,我们在许多常用的蒙特卡洛算法中确定了相同形式的时间积分,因此期望我们的分析解决方案得到更广泛的应用。通过执行频率分辨的动作移位调谐,我们能够进一步改进该方法并在非平凡的状态下将自身能量收敛到仅3–4个扰动阶数。最后,我们在许多常用的蒙特卡洛算法中识别出相同形式的时间积分,因此期望我们的分析解决方案得到更广泛的应用。
更新日期:2021-04-29
down
wechat
bug