当前位置: X-MOL 学术Entropy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biophotons and Emergence of Quantum Coherence—A Diffusion Entropy Analysis
Entropy ( IF 2.7 ) Pub Date : 2021-04-29 , DOI: 10.3390/e23050554
Maurizio Benfatto , Elisabetta Pace , Catalina Curceanu , Alessandro Scordo , Alberto Clozza , Ivan Davoli , Massimiliano Lucci , Roberto Francini , Fabio De Matteis , Maurizio Grandi , Rohisha Tuladhar , Paolo Grigolini

We study the emission of photons from germinating seeds using an experimental technique designed to detect light of extremely small intensity. We analyze the dark count signal without germinating seeds as well as the photon emission during the germination process. The technique of analysis adopted here, called diffusion entropy analysis (DEA) and originally designed to measure the temporal complexity of astrophysical, sociological and physiological processes, rests on Kolmogorov complexity. The updated version of DEA used in this paper is designed to determine if the signal complexity is generated either by non-ergodic crucial events with a non-stationary correlation function or by the infinite memory of a stationary but non-integrable correlation function or by a mixture of both processes. We find that dark count yields the ordinary scaling, thereby showing that no complexity of either kinds may occur without any seeds in the chamber. In the presence of seeds in the chamber anomalous scaling emerges, reminiscent of that found in neuro-physiological processes. However, this is a mixture of both processes and with the progress of germination the non-ergodic component tends to vanish and complexity becomes dominated by the stationary infinite memory. We illustrate some conjectures ranging from stress induced annihilation of crucial events to the emergence of quantum coherence.

中文翻译:

生物光子与量子相干的出现-扩散熵分析

我们使用旨在检测极小强度光的实验技术研究发芽种子中光子的发射。我们分析发芽过程中没有发芽的种子以及光子发射的暗计数信号。此处采用的分析技术被称为扩散熵分析(DEA),其最初旨在测量天体物理学,社会学和生理学过程的时间复杂性,而这种技术基于Kolmogorov复杂性。本文使用的DEA的更新版本旨在确定信号复杂性是由具有非平稳相关函数的非遍历关键事件,还是由固定但不可积分的相关函数的无限存储器生成的还是由信号生成的这两个过程的混合。我们发现暗计数会产生普通的缩放比例,因此表明在腔室内没有任何种子的情况下,不会发生任何一种复杂性。在室内存在种子的情况下,出现了异常的结垢,让人联想到在神经生理过程中发现的结垢。但是,这是这两种过程的混合,随着发芽的进行,非遍历的成分趋于消失,而复杂性则由固定的无限内存所支配。我们举例说明了一些猜想,从应力引起的关键事件的an灭到量子相干的出现。这是这两种过程的混合,随着发芽的进行,非遍历的成分趋于消失,复杂性由固定的无限记忆所支配。我们举例说明了一些猜想,从应力引起的关键事件的an灭到量子相干的出现。这是这两种过程的混合,随着发芽的进行,非遍历的成分趋于消失,复杂性由固定的无限记忆所支配。我们举例说明了一些猜想,从应力引起的关键事件的an灭到量子相干的出现。
更新日期:2021-04-29
down
wechat
bug