当前位置: X-MOL 学术Complexity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MHD Mixed Convection Nanofluid Flow over Convectively Heated Nonlinear due to an Extending Surface with Soret Effect
Complexity ( IF 2.3 ) Pub Date : 2021-04-28 , DOI: 10.1155/2021/5592024
Jamel Bouslimi 1 , M. A. Abdelhafez 2 , A. M. Abd-Alla 2 , S. M. Abo-Dahab 3, 4 , K. H. Mahmoud 5
Affiliation  

The aim of this paper is to investigate the flow of MHD mixed convection nanofluid flow under nonlinear heated due to an extending surface. The transfer of heat in nanofluid subject to a magnetic field and boundary conditions of convective is studied to obtain the physical meaning of the convection phenomenon. The governing partial differential equations (PDEs) of the boundary layer are reduced to ordinary differential equations (ODEs) considering a technique of the transformation of similarity. The transformed equations are solved numerically considering the technique of an efficient numerical shooting applying the Runge–Kutta technique scheme from the fourth-fifth order. The results corresponding to the dimensionless speed, temperature, concentration profiles, and the Nusselt number reduced, and the Sherwood numbers are presented by figures to display the physical meaning of the phenomena. A comparison has been made between the obtained results with the previous results obtained by others and agrees with them if the new parameters vanish. The results obtained indicate the impacts of the nondimensional governing parameters, namely, magnetic field parameter M, Soret number Sr, heat source λ, thermal buoyancy parameter , and solutal buoyancy parameter on the flow, temperature, and concentration profiles being discussed and presented graphically.

中文翻译:

由于具有Soret效应的延伸表面,MHD混合对流纳米流体在对流加热的非线性上的流动

本文的目的是研究由于表面扩展而在非线性加热下的MHD混合对流纳米流体的流动。研究了在磁场和对流边界条件下纳米流体中的热传递,以获得对流现象的物理意义。考虑到相似性转换技术,边界层的控制偏微分方程(PDE)简化为常微分方程(ODE)。考虑到从四阶到五阶采用Runge-Kutta技术方案进行的高效数值拍摄技术,可以对变换后的方程进行数值求解。结果与无量纲速度,温度,浓度曲线和Nusselt数减少相对应,数字显示舍伍德数,以显示现象的物理意义。已将获得的结果与他人获得的先前结果进行了比较,如果新参数消失了,则可以与他们达成一致。获得的结果表明了无量纲控制参数(即磁场参数)的影响。对流量,温度和浓度曲线上的M,Soret数Sr,热源λ,热浮力参数和溶液浮力参数进行了讨论并以图形方式显示。
更新日期:2021-04-29
down
wechat
bug