当前位置: X-MOL 学术Minerals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Iron Isotope Compositions of Coexisting Sulfide and Silicate Minerals in Sudbury-Type Ores from the Jinchuan Ni-Cu Sulfide Deposit: A Perspective on Possible Core-Mantle Iron Isotope Fractionation
Minerals ( IF 2.5 ) Pub Date : 2021-04-28 , DOI: 10.3390/min11050464
Peiyao Wang , Yaoling Niu , Pu Sun , Xiaohong Wang , Pengyuan Guo , Hongmei Gong , Meng Duan , Fangyu Shen , Yining Shi , Song Xue , Yanhong Chen , Li Shan

Many studies have shown that the average iron (Fe) isotope compositions of mantle-derived rocks, mantle peridotite and model mantle are close to those of chondrites. Therefore, it is considered that chondrite values represent the bulk Earth Fe isotope composition. However, this is a brave assumption because nearly 90% of Fe of the Earth is in the core, where its Fe isotope composition is unknown, but it is required to construct bulk Earth Fe isotope composition. We approach the problem by assuming that the Earth’s core separation can be approximated in terms of the Sudbury-type Ni-Cu sulfide mineralization, where sulfide-saturated mafic magmas segregate into immiscible sulfide liquid and silicate liquid. Their density/buoyancy controlled stratification and solidification produced net-textured ores above massive ores and below disseminated ores. The coexisting sulfide minerals (pyrrhotite (Po) > pentlandite (Pn) > chalcopyrite (Cp)) and silicate minerals (olivine (Ol) > orthopyroxene (Opx) > clinopyroxene (Cpx)) are expected to hold messages on Fe isotope fractionation between the two liquids before their solidification. We studied the net-textured ores of the Sudbury-type Jinchuan Ni-Cu sulfide deposit. The sulfide minerals show varying δ56Fe values (−1.37–−0.74‰ (Po) < 0.09–0.56‰ (Cp) < 0.53–1.05‰ (Pn)), but silicate minerals (Ol, Opx, and Cpx) have δ56Fe values close to chondrites (δ56Fe = −0.01 ± 0.01‰). The heavy δ56Fe value (0.52–0.60‰) of serpentines may reflect Fe isotopes exchange with the coexisting pyrrhotite with light δ56Fe. We obtained an equilibrium fractionation factor of Δ56Fesilicate-sulfide ≈ 0.51‰ between reconstructed silicate liquid (δ56Fe ≈ 0.21‰) and sulfide liquid (δ56Fe ≈ −0.30‰), or Δ56Fesilicate-sulfide ≈ 0.36‰ between the weighted mean bulk-silicate minerals (δ56Fe[0.70ol,0.25opx,0.05cpx] = 0.06‰) with weighted mean bulk-sulfide minerals (δ56Fe ≈ −0.30‰). Our study indicates that significant Fe isotope fractionation does take place between silicate and sulfide liquids during the Sudbury-type sulfide mineralization. We hypothesize that significant iron isotope fractionation must have taken place during core–mantle segregation, and the bulk Earth may have lighter Fe isotope composition than chondrites although Fe isotope analysis on experimental sulfide-silicate liquids produced under the varying mantle depth conditions is needed to test our results. We advocate the importance of further research on the subject. Given the close Fe-Ni association in the magmatic mineralization and the majority of the Earth’s Ni is also in the core, we infer that Ni isotope fractionation must also have taken place during the core separation that needs attention.
更新日期:2021-04-29
down
wechat
bug