当前位置: X-MOL 学术J. Inequal. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction to: Generalized Ponce’s inequality
Journal of Inequalities and Applications ( IF 1.6 ) Pub Date : 2021-04-28 , DOI: 10.1186/s13660-021-02609-8
Julio Muñoz

We assume that \(\Omega \subset \mathbb{R}^{N}\) is an open bounded domain with Lipschitz boundary; \(( k_{\delta } ) _{\delta >0}\) is a set of radial positive functions such that \(\operatorname*{supp}k_{\delta }\subset B ( 0,\delta ) \), \(\frac{1}{C_{N}}\int _{B ( 0,\delta ) }k_{\delta } ( \vert s \vert )\,ds=1\), where \(C_{N}=\frac{1}{\operatorname*{meas} ( S^{N-1} ) }\int _{S^{N-1}} \vert \sigma \cdot \mathbf{e} \vert ^{p}\,d\mathcal{H}^{N-1} ( \sigma ) \), \(\mathcal{H}^{N-1}\) is the \(( N-1 ) \)-dimensional Hausdorff measure on the unit sphere \(S^{N-1}\), e is any unit vector in \(\mathbb{R}^{N}\), \(p>1\), and \(B(x,\delta )\) is the the ball with center x and radius δ.

In [2], under the assumptions above, the following compactness is recalled (see [2] and references therein):

Theorem 1

Assume Ω is an open bounded domain with Lipschitz boundary. Let \(( u_{\delta } ) _{\delta }\) be a sequence uniformly bounded in \(L^{p} ( \Omega )\), and let C be a positive constant such that

$$ \int _{\Omega } \int _{\Omega } \frac{k_{\delta } ( \vert x^{\prime }-x \vert ) }{ \vert x^{\prime }-x \vert ^{p}} \bigl\vert u_{\delta } \bigl( x^{\prime } \bigr) -u_{\delta } ( x ) \bigr\vert ^{p}\,dx^{\prime }\,dx\leq C $$(1.1)

for any δ. Then, from \(( u_{\delta } ) _{\delta }\) we can extract a subsequence, still denoted by \(( u_{\delta } ) _{\delta }\), and we can find \(u\in W^{1,p} ( \Omega ) \) such that \(u_{\delta }\rightarrow u\) strongly in \(L^{p} ( \Omega ) \) as \(\delta \rightarrow 0\) and

$$ \lim_{\delta \rightarrow 0} \int _{\Omega } \int _{\Omega } \frac{k_{\delta } ( \vert x^{\prime }-x \vert ) }{ \vert x^{\prime }-x \vert ^{p}} \bigl\vert u_{\delta } \bigl( x^{\prime } \bigr) -u_{\delta } ( x ) \bigr\vert ^{p}\,dx^{\prime }\,dx\geq \int _{\Omega } \bigl\vert \nabla u ( x ) \bigr\vert ^{p}\,dx. $$(1.2)

Even though several authors are involved in the proof, we refer to estimate (1.2) as Ponce’s inequality.

The goal of [2] is to prove the following extension of (1.2):

$$ \lim_{\delta \rightarrow 0} \int _{\Omega } \int _{\Omega }H \bigl( x^{ \prime },x \bigr) \frac{k_{\delta } ( \vert x^{\prime }-x \vert ) }{ \vert x^{\prime }-x \vert ^{p}} \bigl\vert u_{\delta } \bigl( x^{\prime } \bigr) -u_{\delta } ( x ) \bigr\vert ^{p}\,dx^{\prime } \,dx\geq \int _{\Omega }h ( x ) \bigl\vert \nabla u ( x ) \bigr\vert ^{p}\,dx, $$(1.3)

where Ω is an open bounded set with Lipschitz boundary, \(H ( x^{\prime },x ) = \frac{h ( x^{\prime })+h(x ) }{2}\), and h is a nonnegative function from \(L^{\infty } ( \Omega ) \).

Alternatively, the goal is to check the inequality (1.2) for measurable sets, that is,

$$\begin{aligned}& \lim_{\delta \rightarrow 0} \int _{E} \int _{E} \frac{k_{\delta } ( \vert x^{\prime }-x \vert ) }{ \vert x^{\prime }-x \vert ^{p}} \bigl\vert u_{\delta } \bigl( x^{\prime } \bigr) -u_{\delta } ( x ) \bigr\vert ^{p}\,dx^{\prime }\,dx \\& \quad \geq \int _{E} \bigl\vert \nabla u ( x ) \bigr\vert ^{p}\,dx,\quad \text{for any measurable }E\subset \Omega . \end{aligned}$$ (1.4)

It must be remarked that both inequalities are true but some basis for the proofs is false. Concretely, Proposition 1 from [2, p. 3] is wrong and, consequently, those parts where it is used have to be modified. Let us go through the steps and distinguish which parts are faulty.

Proposition 2 from [2, p. 4] is true and its proof is correct. The analysis application derived that proposition establishes

$$ \liminf_{\delta \rightarrow 0} \int _{O} \int _{O}H \bigl( x^{\prime },x \bigr) \frac{k_{\delta } ( \vert x^{\prime }-x \vert ) }{ \vert x^{\prime }-x \vert ^{p}} \bigl\vert u_{\delta } \bigl( x^{\prime } \bigr) -u_{\delta } ( x ) \bigr\vert ^{p}\,dx^{ \prime } \,dx\geq \int _{O}h ( x ) \bigl\vert \nabla u ( x ) \bigr\vert ^{p}\,dx $$(2.1)

for any symmetric nonnegative continuous function \(F\in L^{\infty } ( O\times O ) \) and any smooth open set O such that \(\vert \partial O \vert =0\). However, the proof extending (1.3) to the case where H is a measurable function of \(L^{\infty } ( \Omega ) \) is invalid because it relies on Proposition 1.

The extension to the case of measurable functions is possible because Proposition 2 from [2, p. 4] is also true for the case \(p=\infty \) and \(q=1\). Let us check it. By looking back at the original work where the idea of the proof comes from, we can check that this result is valid for all \(f\in L^{p}\) and \(\xi \in L^{q} ( \Omega ) \), with \(\frac{1}{p}+\frac{1}{q}=1\), even for the case \(p=\infty \) and \(q=1\) (see [3, p. 126]). Namely, in [3, p. 130], given \(f\in L^{p}\), we can select a family of disjoint sets \(\{ a_{kj}+\epsilon _{kj}\overline{\Omega } \} _{j}\) covering Ω such that

$$ \int _{\Omega }f ( x ) \psi ( x )\,dx\leq \sum _{i}f ( a_{ki} ) \int _{a_{ki}+\epsilon _{ki}\Omega }\psi ( x )\,dx-\frac{1}{k} \vert \Omega \vert ^{1/p} \Vert \psi \Vert _{L^{q} ( \Omega ) }$$

for any \(\psi \in L^{q}\).

Now, for simplicity, we assume \(f\in L^{\infty }\) and ξ \(L^{1}\) are nonnegative functions. Since \(\xi ^{1/q}\in L^{q}\) for any q, and \(f\in L^{p}\) for any p, the above inequality for \(\psi =\xi ^{1/q}\) reads as

$$ \int _{\Omega }f ( x ) \xi ^{1/q} ( x )\,dx\leq \sum _{i}f ( a_{ki} ) \int _{a_{ki}+\epsilon _{ki}\Omega } \xi ^{1/q} ( x )\,dx- \frac{1}{k} \vert \Omega \vert ^{1/p} \Vert \xi \Vert _{L^{1} ( \Omega ) }^{1/q}. $$

If we pass to the limit as \(p\uparrow \infty \), then \(q=\frac{p}{p-1}\downarrow 1\) and \(\xi ^{1/q} ( x ) \rightarrow \xi ( x ) \), and, consequently, by monotone and dominated convergence for series and integrals, we infer

$$ \int _{\Omega }f ( x ) \xi ( x )\,dx\leq \sum _{i}f ( a_{ki} ) \int _{a_{ki}+\epsilon _{ki}\Omega }\xi ( x )\,dx-\frac{1}{k} \Vert \xi \Vert _{L^{1} ( \Omega ) }. $$

Using this inequality and following the previous procedure, then we can conclude that (2.1) remains valid for any symmetric and nonnegative function \(F\in L^{\infty } ( O\times O ) \) and any smooth domain \(O\subset \Omega \) such that \(\vert \partial O \vert =0\).

Finally, in order to circumvent the assumption \(\vert \partial \Omega \vert =0\), we simplify as follows: for the given domain Ω, we consider Ω̃, a regular domain containing Ω whose boundary is a null set, and we extend H by zero in \(( \widetilde{\Omega }\times \widetilde{\Omega } ) \setminus ( \Omega \times \Omega ) \). We denote this extended function of H by \(H_{0}\), which is measurable, symmetric, and nonnegative. In the same way, we also appropriately extend \(u_{\delta }\) to Ω̃, so that (1.1) still holds. To do that, we first note that Ω is smooth and, therefore, we can extend u to \(\widetilde{u}\in W^{1,p} ( \widetilde{\Omega } ) \). Then, we define \(\widetilde{u}_{\delta } ( x ) =u ( x ) \) if x \(\widetilde{\Omega }\setminus \Omega \) and \(\widetilde{u}_{\delta } ( x ) =u_{\delta } ( x ) \) if \(x\in \Omega \). It is immediate to check that \(( \widetilde{u}_{\delta } ) _{\delta }\) is uniformly bounded in \(L^{p}\) and

$$ \int _{\widetilde{\Omega }} \int _{\widetilde{\Omega }}H_{0} \bigl( x^{ \prime },x \bigr) \frac{k_{\delta } ( \vert x^{\prime }-x \vert ) }{ \vert x^{\prime }-x \vert ^{p}} \bigl\vert \widetilde{u}_{\delta } \bigl( x^{\prime } \bigr) - \widetilde{u}_{\delta } ( x ) \bigr\vert ^{p}\,dx^{\prime }\,dx \leq C. $$

Then, by Theorem 1, we obtain

$$ \liminf_{\delta \rightarrow 0} \int _{\widetilde{\Omega }} \int _{ \widetilde{\Omega }}H_{0} \bigl( x^{\prime },x \bigr) \frac{k_{\delta } ( \vert x^{\prime }-x \vert ) }{ \vert x^{\prime }-x \vert ^{p}} \bigl\vert \widetilde{u}_{\delta } \bigl( x^{\prime } \bigr) - \widetilde{u}_{\delta } ( x ) \bigr\vert ^{p}\,dx^{\prime }\,dx \geq \int _{\widetilde{\Omega }}H_{0} ( x,x ) \bigl\vert \nabla \widetilde{u} ( x ) \bigr\vert ^{p}\,dx. $$

Now we realize that the above inequality coincides with (2.1) for any open and bounded set Ω.

The analysis performed proving a corollary in Sect. 2.3 in [2, p. 7] is correct and therefore serves to establish that (1.4) is valid for all measurable sets \(G\subset \Omega \).

This part of the paper deserves a stark modification because the proof given in [2] is based entirely on Proposition 1.

We first prove (1.4) and then (1.3). We assume Ω is open and \(\vert \partial \Omega \vert =0\). By hypothesis, \(( \xi _{\delta } ) _{\delta }\) is a sequence uniformly bounded in \(L^{1} ( \Omega \times \Omega )\) and, under these circumstances, we can use Chacon’s biting lemma (see [1]) to ensure the existence of a subsequence of \(\delta ^{\prime }s\), not relabeled, a decreasing sequence of measurable sets \(\mathcal{E}_{n}\subset \Omega \times \Omega \), such that \(\vert \mathcal{E}_{n} \vert \downarrow 0\), and a function \(\xi \in L^{1} ( \Omega \times \Omega ) \) such that \(\xi _{\delta }\rightharpoonup \xi \) weakly in \(L^{1} ( \Omega \times \Omega \setminus \mathcal{E}_{n} ) \) for all n. Since we are dealing with a sequence of symmetric functions, we can ensure \(( \Omega \times \Omega ) \setminus \mathcal{E}_{n}= ( \Omega \setminus E_{n} ) \times ( \Omega \setminus E_{n} ) \) where the sequence of sets \(E_{n}\subset \Omega \) is decreasing and \(\vert E_{n} \vert \downarrow 0\) if \(n\rightarrow \infty \).

Let \(O_{n}\) be any open set such that \(E_{n}\subset O_{n}\subset \Omega \), \(\vert \partial O_{n} \vert =0\), \(\vert \overline{O}_{n} \vert \downarrow 0\) if \(n\rightarrow \infty \), and \(\overline{O}_{n}\subset \Omega \) except for a null subset of \(\overline{O}_{n}\). To achieve these properties, we solely need to take \(\overline{O}_{n}\) as the infimum of the unions of open balls containing \(E_{n}\).

We apply Chacon’s biting lemma to guarantee

$$ \lim_{\delta \rightarrow 0} \iint _{A\times A}\xi _{\delta } \bigl( x^{ \prime },x \bigr)\,dx^{\prime }\,dx= \iint _{A\times A}\xi \bigl( x^{ \prime },x \bigr) \,dx^{\prime }\,dx $$(3.1)

for any measurable \(A\times A\subset ( \Omega \setminus \overline{O}_{n} ) \times ( \Omega \setminus \overline{O}_{n} ) \). Also, inequality (1.4) for open sets provides

$$ \lim_{\delta \rightarrow 0} \iint _{A\times A}\xi _{\delta } \bigl( x^{ \prime },x \bigr)\,dx^{\prime }\,dx\geq \int _{A} \bigl\vert \nabla u ( x ) \bigr\vert ^{p}\,dx, $$(3.2)

for any measurable set \(A\subset \Omega \setminus \overline{O}_{n}\) (here we are considering the subsequence of \(\delta ^{\prime }s\) for which (1.4) holds).

Now, we first consider \(A=B ( x_{0},r ) \subset \Omega \setminus \overline{O}_{n}\) for any \(x_{0}\in \Omega \setminus \overline{O}_{n}\). Then, on the one hand, by (3.2)we have

$$ \lim_{\delta \rightarrow 0} \iint _{B ( x_{0},r ) \times B ( x_{0},r ) }\xi _{\delta } \bigl( x^{\prime },x \bigr)\,dx^{ \prime }\,dx= \iint _{B ( x_{0},r ) \times B ( x_{0},r ) } \xi \bigl( x^{\prime },x \bigr) \,dx^{\prime }\,dx. $$(3.3)

On the other hand, since \(B ( x_{0},r ) \times B ( x_{0},r ) \) is a smooth domain, (1.4) can be applied and hence

$$ \lim_{\delta \rightarrow 0} \iint _{B ( x_{0},r ) \times B ( x_{0},r ) }\xi _{\delta } \bigl( x^{\prime },x \bigr)\,dx^{ \prime }\,dx\geq \int _{B ( x_{0},r ) } \bigl\vert \nabla u ( x ) \bigr\vert ^{p}\,dx. $$(3.4)

By using (3.3) and (3.4), we arrive at this crucial inequality for any \(B ( x_{0},r ) \subset \Omega \setminus \overline{O}_{n}\):

$$ \iint _{B ( x_{0},r ) \times B ( x_{0},r ) } \xi \bigl( x^{\prime },x \bigr) \,dx^{\prime }\,dx\geq \int _{B ( x_{0},r ) } \bigl\vert \nabla u ( x ) \bigr\vert ^{p}\,dx\,dx^{ \prime }. $$(3.5)

Thus, (3.2) holds for any measurable set \(A\subset \Omega \setminus \overline{O}_{n}\).

Finally, we analyze \(\lim_{\delta \rightarrow 0}\iint _{G\times G}\xi _{\delta } ( x^{ \prime },x )\,dx^{\prime }\,dx\), where \(G\subset \Omega \) is any measurable set. We note that

$$ \iint _{G\times G}\xi _{\delta } \bigl( x^{\prime },x \bigr)\,dx^{ \prime }\,dx\geq \iint _{ ( G\setminus \overline{O}_{n} ) \times ( G\setminus \overline{O}_{n} ) }\xi _{\delta } \bigl( x^{ \prime },x \bigr)\,dx^{\prime }\,dx $$

which, thanks to Chacon’s biting lemma, provides the estimate

$$ \lim_{\delta \rightarrow 0} \iint _{G\times G}\xi _{\delta } \bigl( x^{ \prime },x \bigr)\,dx^{\prime }\,dx\geq \iint _{ ( G\setminus \overline{O}_{n} ) \times ( G\setminus \overline{O}_{n} ) }\xi \bigl( x^{\prime },x \bigr) \,dx^{\prime }\,dx. $$

Since \(G\setminus \overline{O}_{n}\) is a measurable set included in \(\Omega \setminus \overline{O}_{n}\), (3.2) for measurable sets provides the estimate

$$ \iint _{ ( G\setminus \overline{O}_{n} ) \times ( G \setminus \overline{O}_{n} ) }\xi \bigl( x^{\prime },x \bigr) \,dx^{ \prime }\,dx\geq \int _{G\setminus \overline{O}_{n}} \bigl\vert \nabla u ( x ) \bigr\vert ^{p}\,dx, $$

which straightforwardly implies

$$ \lim_{\delta \rightarrow 0} \iint _{G\times G}\xi _{\delta } \bigl( x^{ \prime },x \bigr)\,dx^{\prime }\,dx\geq \int _{G\setminus \overline{O}_{n}} \bigl\vert \nabla u ( x ) \bigr\vert ^{p}\,dx. $$

By letting \(n\rightarrow \infty \), we finish the proof of (1.4).

To avoid the hypothesis \(\vert \partial \Omega \vert =0\), we proceed as in the previous section.

The analysis performed when proving a corollary in Sect. 3.1 from [2, p. 8] is correct and therefore serves to assert that (1.3) is valid for all measurable functions h.

All the changes requested are implemented in this correction.

  1. 1.

    Brooks, J.K., Chacon, R.V.: Continuity and compactness of measures. Adv. Math. 37, 16–26 (1980)

    MathSciNet Article Google Scholar

  2. 2.

    Muñoz, J.: Generalized Ponce’s inequality. J. Inequal. Appl. 2021, 11 (2021). https://doi.org/10.1186/s13660-020-02543-1

    MathSciNet Article Google Scholar

  3. 3.

    Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997)

    Book Google Scholar

Download references

The author would like to acknowledge most warmly Anton Egrafov’s comments.

Affiliations

  1. Departamento de Matemáticas, Universidad de Castilla-La Mancha, Toledo, Spain

    Julio Muñoz

Authors
  1. Julio MuñozView author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Julio Muñoz.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Muñoz, J. Correction to: Generalized Ponce’s inequality. J Inequal Appl 2021, 80 (2021). https://doi.org/10.1186/s13660-021-02609-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13660-021-02609-8



中文翻译:

更正为:广义Ponce不等式

我们假设\(\ Omega \ subset \ mathbb {R} ^ {N} \)是一个具有Lipschitz边界的开放域;\((k _ {\ delta})_ {\ delta> 0} \)是一组径向正函数,例如\(\ operatorname * {supp} k _ {\ delta} \ subset B(0,\ delta)\ )\(\ frac {1} {C_ {N}} \ int _ {B(0,\ delta)} k _ {\ delta}(\ vert s \ vert)\,ds = 1 \),其中\( C_ {N} = \ frac {1} {\ operatorname * {meas}(S ^ {N-1})} \ int _ {S ^ {N-1}} \ vert \ sigma \ cdot \ mathbf {e} \ vert ^ {p} \,d \ mathcal {H} ^ {N-1}(\ sigma)\)\(\ mathcal {H} ^ {N-1} \)\((N-1 )\)-单位球面上\(S ^ {N-1} \)的尺寸Hausdorff测度,e\(\ mathbb {R} ^ {N} \)\(p> 1 \)\(B(x,\ delta)\)是中心为x且半径为δ的球。

在[2]中,在上述假设下,召回了以下紧凑性(请参见[2]及其参考):

定理1

假设Ω是一个具有Lipschitz边界的开界域 \((u _ {\ delta})_ {\ delta} \) 是在 \(L ^ {p}(\ Omega)\)中均匀有界的序列 C 为一个正常数,使得

$$ \ int _ {\ Omega} \ int _ {\ Omega} \ frac {k _ {\ delta}(\ vert x ^ {\ prime} -x \ vert)} {\ vert x ^ {\ prime} -x \ vert ^ {p}} \ bigl \ vert u _ {\ delta} \ bigl(x ^ {\ prime} \ bigr)-u _ {\ delta}(x)\ bigr \ vert ^ {p} \,dx ^ { \ prime} \,dx \ leq C $$(1.1)

对于任何 δ然后 \((u _ {\ delta})_ {\ delta} \) 中提取一个子序列仍然用 \((u _ {\ delta})_ {\ delta} \)表示我们可以找到 \ (u \ in W ^ {1,p}(\ Omega)\) 使得 \(u _ {\ delta} \ rightarrow u \) \(L ^ {p}(\ Omega)\)中 强烈地 \(\ delta \ rightarrow 0 \)

$$ \ lim _ {\ delta \ rightarrow 0} \ int _ {\ Omega} \ int _ {\ Omega} \ frac {k _ {\ delta}(\ vert x ^ {\ prime} -x \ vert)} {\ vert x ^ {\ prime} -x \ vert ^ {p}} \ bigl \ vert u _ {\ delta} \ bigl(x ^ {\ prime} \ bigr)-u _ {\ delta}(x)\ bigr \ vert ^ {p} \,dx ^ {\ prime} \,dx \ geq \ int _ {\ Omega} \ bigl \ vert \ nabla u(x)\ bigr \ vert ^ {p} \,dx。$$(1.2)

即使有几位作者参与了证明,我们也将估计(1.2)称为庞塞不等式。

[2]的目标是证明(1.2)的以下扩展:

$$ \ lim _ {\ delta \ rightarrow 0} \ int _ {\ Omega} \ int _ {\ Omega} H \ bigl(x ^ {\ prime},x \ bigr)\ frac {k _ {\ delta}(\ vert x ^ {\ prime} -x \ vert}} {\ vert x ^ {\ prime} -x \ vert ^ {p}} \ bigl \ vert u _ {\ delta} \ bigl(x ^ {\ prime} \ bigr)-u _ {\ delta}(x)\ bigr \ vert ^ {p} \,dx ^ {\ prime} \,dx \ geq \ int _ {\ Omega} h(x)\ bigl \ vert \ nabla u (x)\ bigr \ vert ^ {p} \,dx,$$(1.3)

其中Ω是具有Lipschitz边界的开放边界集\(H(x ^ {\ prime},x)= \ frac {h(x ^ {\ prime})+ h(x)} {2} \),并且h\(L ^ {\ infty}(\ Omega)\)中的非负函数。

或者,目标是检查可测集合的不等式(1.2),即

$$ \ begin {aligned}&\ lim _ {\ delta \ rightarrow 0} \ int _ {E} \ int _ {E} \ frac {k _ {\ delta}(\ vert x ^ {\ prime} -x \ vert )} {\ vert x ^ {\ prime} -x \ vert ^ {p}} \ bigl \ vert u _ {\ delta} \ bigl(x ^ {\ prime} \ bigr)-u _ {\ delta}(x) \ bigr \ vert ^ {p} \,dx ^ {\ prime} \,dx \\&\ quad \ geq \ int _ {E} \ bigl \ vert \ nabla u(x)\ bigr \ vert ^ {p} \,dx,\ quad \ text {用于任何可测量的} E \ subset \ Omega。\ end {aligned} $$(1.4)

必须指出,两个不等式都是正确的,但证明的某些依据是错误的。具体来说,[2,p。1]中的命题1。3]是错误的,因此,必须修改使用它的那些部分。让我们逐步执行这些步骤,并区分出哪些部分是有缺陷的。

来自[2,p。2的命题2。4]是正确的,其证明是正确的。命题建立的分析应用

$$ \ liminf _ {\ delta \ rightarrow 0} \ int _ {O} \ int _ {O} H \ bigl(x ^ {\ prime},x \ bigr)\ frac {k _ {\ delta}(\ vert x ^ {\ prime} -x \ vert)} {\ vert x ^ {\ prime} -x \ vert ^ {p}} \ bigl \ vert u _ {\ delta} \ bigl(x ^ {\ prime} \ bigr) -u _ {\ delta}(x)\ bigr \ vert ^ {p} \,dx ^ {\ prime} \,dx \ geq \ int _ {O} h(x)\ bigl \ vert \ nabla u(x) \ bigr \ vert ^ {p} \,dx $$(2.1)

对于任何对称的非负连续函数\(F \ in L ^ {\ infty}(O \ times O)\)和任何平滑开集O使得\(\ vert \ partial O \ vert = 0 \)。但是,将(1.3)扩展到H\(L ^ {\ infty}(\ Omega)\)的可测量函数的情况是无效的,因为它依赖于命题1。

由于[2,p。1中的命题2]可以扩展到可测量函数的情况。4]对于\(p = \ infty \)\(q = 1 \)的情况也是如此。让我们检查一下。通过回顾证明思想起源的原始工作,我们可以检查该结果对于所有\(f \ in L ^ {p} \)\(\ xi \ in L ^ {q} (\ Omega)\)\(\ frac {1} {p} + \ frac {1} {q} = 1 \),即使对于\(p = \ infty \)\(q = 1 \)(请参阅[3,第126页])。即,在[3,p。130],在给定\(f \ in L ^ {p} \)的情况下,我们可以选择不相交集族\(\ {a_ {kj} + \ epsilon _ {kj} \ overline {\ Omega} \} _ { j} \)覆盖Ω,使得

$$ \ int _ {\ Omega} f(x)\ psi(x)\,dx \ leq \ sum _ {i} f(a_ {ki})\ int _ {a_ {ki} + \ epsilon _ {ki } \ Omega} \ psi(x)\,dx- \ frac {1} {k} \ vert \ Omega \ vert ^ {1 / p} \ Vert \ psi \ Vert _ {L ^ {q}(\ Omega) } $$

对于任何\(\ psi \ in L ^ {q} \)

现在,为了简单起见,我们假设\(F \在L ^ {\ infty} \)ξ ∈ \(L ^ {1} \)是非负函数。由于\(在L ^ {Q} \ XI ^ {1 / Q} \ \)对于任何q,和\(F \在L ^ {P} \)对于任何p,对于上面的不等式\(\ PSI = \ xi ^ {1 / q} \)读为

$$ \ int _ {\ Omega} f(x)\ xi ^ {1 / q}(x)\,dx \ leq \ sum _ {i} f(a_ {ki})\ int _ {a_ {ki} + \ epsilon _ {ki} \ Omega} \ xi ^ {1 / q}(x)\,dx- \ frac {1} {k} \ vert \ Omega \ vert ^ {1 / p} \ Vert \ xi \垂直_ {L ^ {1}(\ Omega)} ^ {1 / q}。$$

如果我们将极限传递为\(p \ uparrow \ infty \),则\(q = \ frac {p} {p-1} \ downarrow 1 \)\(\ xi ^ {1 / q}(x )\ rightarrow \ xi(x)\),因此,通过级数和积分的单调和占优收敛,我们可以得出

$$ \ int _ {\ Omega} f(x)\ xi(x)\,dx \ leq \ sum _ {i} f(a_ {ki})\ int _ {a_ {ki} + \ epsilon _ {ki } \ Omega} \ xi(x)\,dx- \ frac {1} {k} \ Vert \ xi \ Vert _ {L ^ {1}(\ Omega)}。$$

使用该不等式并遵循前面的过程,我们可以得出结论:(2.1)对于任何对称和非负函数\(F \ in L ^ {\ infty}(O \ times O)\)和任何平滑域\( O \ subset \ Omega \)使得\(\ vert \ partial O \ vert = 0 \)

最后,为了规避假设\(\ vert \ partial \ Omega \ vert = 0 \),我们简化如下:对于给定的域Ω,我们考虑Ω̃,这是一个包含Ω的常规域,其边界是空集,然后在\((\ widetilde {\ Omega} \ times \ widetilde {\ Omega}} \ setminus(\ Omega \ times \ Omega} \中将H扩展为零。我们用\(H_ {0} \)表示H的扩展函数,它是可测量的,对称的和非负的。同样,我们也将\(u _ {\ delta} \)适当地扩展到Ω̃,以便(1.1)仍然成立。为此,我们首先注意到Ω是平滑的,因此,我们可以将u扩展为\(\ widetilde {u} \ in W ^ {1,p}(\ widetilde {\ Omega})\)。然后,我们定义\(\ widetilde【U} _ {\增量}(X)= U(x)的\)如果X \(\ widetilde {\欧米茄} \ setminus \欧米茄\)\(\ widetilde【U } _ {\ delta}(x)= u _ {\ delta}(x)\)如果\(x \ in \ Omega \)。立即检查\((\ widetilde {u} _ {\ delta})_ {\ delta} \)是否均匀地限制在\(L ^ {p} \)

$$ \ int _ {\ widetilde {\ Omega}} \ int _ {\ widetilde {\ Omega}} H_ {0} \ bigl(x ^ {\ prime},x \ bigr)\ frac {k _ {\ delta} (\ vert x ^ {\ prime} -x \ vert)} {\ vert x ^ {\ prime} -x \ vert ^ {p}} \ bigl \ vert \ widetilde {u} _ {\\ delta} \ bigl( x ^ {\ prime} \ bigr)-\ widetilde {u} _ {\ delta}(x)\ bigr \ vert ^ {p} \,dx ^ {\ prime} \,dx \ leq C. $$

然后,根据定理1,我们得到

$$ \ liminf _ {\ delta \ rightarrow 0} \ int _ {\ widetilde {\ Omega}} \ int _ {\ widetilde {\ Omega}} H_ {0} \ bigl(x ^ {\ prime},x \ bigr )\ frac {k _ {\ delta}(\ vert x ^ {\ prime} -x \ vert)} {\ vert x ^ {\ prime} -x \ vert ^ {p}} \ bigl \ vert \ widetilde {u } _ {\ delta} \ bigl(x ^ {\ prime} \ bigr)-\ widetilde {u} _ {\ delta}(x)\ bigr \ vert ^ {p} \,dx ^ {\ prime} \, dx \ geq \ int _ {\ widetilde {\ Omega}} H_ {0}(x,x)\ bigl \ vert \ nabla \ widetilde {u}(x)\ bigr \ vert ^ {p} \,dx。$$

现在我们意识到,对于任何开放集和有界集Ω,上述不等式都与(2.1)一致。

该分析证明了Sect中的必然结果。2.3 in [2,p。7]是正确的,因此可以证明(1.4)对所有可测集合\(G \ subset \ Omega \)有效

本文的这一部分应该进行明显的修改,因为[2]中给出的证明完全基于命题1。

我们首先证明(1.4),然后证明(1.3)。我们假设Ω是开路的并且\(\ vert \ partial \ Omega \ vert = 0 \)。根据假设,\((\ xi _ {\ delta} _ {\ delta} \)是一个均匀地以\(L ^ {1}(\ Omega \ times \ Omega)\)为边界的序列,在这种情况下,我们可以使用Chacon的咬住引理(请参见[1])来确保存在\(\ delta ^ {\ prime} s \)的子序列(未重新标记,并减少了可测集\(\ mathcal {E} _ {n} \ subset \ Omega \ times \ Omega \),例如\(\ vert \ mathcal {E} _ {n} \ vert \ downarrow 0 \)和一个函数\(\ xi \ in L ^ {1 }(\ Omega \ times \ Omega)\)使得\(\ xi _ {\ delta} \ rightharpoonup \ xi \)\(L ^ {1}(\ Omega \ times \ Omega \ setminus \ mathcal {E} _ {n})\)对于所有n。由于我们要处理一系列对称函数,因此我们可以确保\((\ Omega \ times \ Omega)\ setminus \ mathcal {E} _ {n} =(\ Omega \ setminus E_ {n})\ times(\ Omega \ setminus E_ {n})\)其中集\(E_ {n} \ subset \ Omega \)的序列递减,而\(\ vert E_ {n} \ vert \ downarrow 0 \)如果\(n \ rightarrow \ infty \)

\(O_ {n} \)为任何开放集,使得\(E_ {n} \ subset O_ {n} \ subset \ Omega \)\(\ vert \ partial O_ {n} \ vert = 0 \)\(\ vert \ overline {O} _ {n} \ vert \ downarrow 0 \)如果\(n \ rightarrow \ infty \)\(\ overline {O} _ {n} \ subset \ Omega \)\(\ overline {O} _ {n} \)的空子集除外。要获得这些属性,我们只需要将\(\ overline {O} _ {n} \)作为包含\(E_ {n} \)的开球并集的最小值即可。

我们应用Chacon的咬人引理来保证

$$ \ lim _ {\ delta \ rightarrow 0} \ iint _ {A \ times A} \ xi _ {\ delta} \ bigl(x ^ {\ prime},x \ bigr)\,dx ^ {\ prime} \ ,dx = \ iint _ {A \ times A} \ xi \ bigl(x ^ {\ prime},x \ bigr)\,dx ^ {\ prime} \,dx $$(3.1)

对于任何可测量的\(A \ times A \ subset(\ Omega \ setminus \ overline {O} _ {n})\ times(\ Omega \ setminus \ overline {O} _ {n})\)。另外,开放集的不等式(1.4)提供了

$$ \ lim _ {\ delta \ rightarrow 0} \ iint _ {A \ times A} \ xi _ {\ delta} \ bigl(x ^ {\ prime},x \ bigr)\,dx ^ {\ prime} \ ,dx \ geq \ int _ {A} \ bigl \ vert \ nabla u(x)\ bigr \ vert ^ {p} \,dx,$$(3.2)

对于任何(1.4)成立的可测量集合\(A \ subset \ Omega \ setminus \ overline {O} _ {n} \)(这里我们考虑的是\(\ delta ^ {\ prime} s \)的子序列)。

现在,我们首先考虑\ Omega \ setminus \中的任何\(x_ {0} \\\ Omega \ setminus \ overline {O} _ {n} \)\(A = B(x_ {0},r)\ subset \ Omega \ setminus \ overline {O} _ {n} \上划线{O} _ {n} \)。然后,一方面,通过(3.2)

$$ \ lim _ {\ delta \ rightarrow 0} \ iint _ {B(x_ {0},r)\ times B(x_ {0},r)} \ xi _ {\ delta} \ bigl(x ^ {\素数},x \ bigr)\,dx ^ {\ prime} \,dx = \ iint _ {B(x_ {0},r)\倍B(x_ {0},r)} \ xi \ bigl(x ^ {\ prime},x \ bigr)\,dx ^ {\ prime} \,dx。$$(3.3)

另一方面,由于\(B(x_ {0},r)\ times B(x_ {0},r)\)是一个平滑域,因此可以应用(1.4)

$$ \ lim _ {\ delta \ rightarrow 0} \ iint _ {B(x_ {0},r)\ times B(x_ {0},r)} \ xi _ {\ delta} \ bigl(x ^ {\质数},x \ bigr)\,dx ^ {\ prime} \,dx \ geq \ int _ {B(x_ {0},r)}} \ bigl \ vert \ nabla u(x)\ bigr \ vert ^ { p} \,dx。$$(3.4)

通过使用(3.3)和(3.4),我们得出任何\(B(x_ {0},r)\ subset \ Omega \ setminus \ overline {O} _ {n} \)的关键不等式:

$$ \ iint _ {B(x_ {0},r)\ times B(x_ {0},r)}} \ xi \ bigl(x ^ {\ prime},x \ bigr)\,dx ^ {\ prime } \,dx \ geq \ int _ {B(x_ {0},r)} \ bigl \ vert \ nabla u(x)\ bigr \ vert ^ {p} \,dx \,dx ^ {\ prime}。$$(3.5)

因此,(3.2)对于任何可测量的集合\(A \ subset \ Omega \ setminus \ overline {O} _ {n} \)成立

最后,我们分析\(\ lim _ {\ delta \ rightarrow 0} \ iint _ {G \ times G} \ xi _ {\ delta}(x ^ {\ prime},x)\,dx ^ {\ prime} \ ,dx \),其中\(G \ subset \ Omega \)是任何可测量的集合。我们注意到

$$ \ iint _ {G \ times G} \ xi _ {\ delta} \ bigl(x ^ {\ prime},x \ bigr)\,dx ^ {\ prime} \,dx \ geq \ iint _ { G \ setminus \ overline {O} _ {n})\ times(G \ setminus \ overline {O} _ {n})} \ xi _ {\ delta} \ bigl(x ^ {\ prime},x \ bigr )\,dx ^ {\ prime} \,dx $$

由于Chacon咬人的引理,它提供了估计

$$ \ lim _ {\ delta \ rightarrow 0} \ iint _ {G \ times G} \ xi _ {\ delta} \ bigl(x ^ {\ prime},x \ bigr)\,dx ^ {\ prime} \ ,dx \ geq \ iint _ {(G \ setminus \ overline {O} _ {n})\ times(G \ setminus \ overline {O} _ {n})} \ xi \ bigl(x ^ {\ prime} ,x \ bigr)\,dx ^ {\ prime} \,dx。$$

由于\(G \ setminus \ overline {O} _ {n} \)是包含在\(\ Omega \ setminus \ overline {O} _ {n} \)中的可测量集合,因此,针对可测量集合的(3.2)提供了估计

$$ \ iint _ {(G \ setminus \ overline {O} _ {n})\ times(G \ setminus \ overline {O} _ {n})} \ xi \ bigl(x ^ {\ prime},x \ bigr)\,dx ^ {\ prime} \,dx \ geq \ int _ {G \ setminus \ overline {O} _ {n}} \ bigl \ vert \ nabla u(x)\ bigr \ vert ^ {p } \,dx,$$

直接暗示

$$ \ lim _ {\ delta \ rightarrow 0} \ iint _ {G \ times G} \ xi _ {\ delta} \ bigl(x ^ {\ prime},x \ bigr)\,dx ^ {\ prime} \ ,dx \ geq \ int _ {G \ setminus \ overline {O} _ {n}} \ bigl \ vert \ nabla u(x)\ bigr \ vert ^ {p} \,dx。$$

通过让\ {n \ rightarrow \ infty \),我们完成了(1.4)的证明。

为了避免假设\(\ vert \ partial \ Omega \ vert = 0 \),我们按照上一节中的步骤进行操作。

证明Sect中的推论时执行的分析。3.1来自[2,p。[8]是正确的,因此可以断言(1.3)对所有可测函数h有效。

在此更正中实现了所有要求的更改。

  1. 1。

    Brooks,JK,Chacon,RV:措施的连续性和紧凑性。进阶 数学。37,16-26(1980)

    MathSciNet文章Google学术搜索

  2. 2。

    Muñoz,J .:广义Ponce不等式。J.不等。应用 2021、11(2021)。https://doi.org/10.1186/s13660-020-02543-1

    MathSciNet文章Google学术搜索

  3. 3。

    Pedregal,P .:参数化度量和变分原理。Birkhäuser,巴塞尔(1997)

    预订Google Scholar

下载参考

作者要最热烈地感谢安东·埃格拉夫(Anton Egrafov)的评论。

隶属关系

  1. 卡斯蒂利亚-拉曼恰大学,西班牙托莱多

    胡里奥·穆尼奥斯

作者
  1. JulioMuñoz查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

通讯作者

对应于JulioMuñoz。

开放存取本文是根据知识共享署名4.0国际许可许可的,该许可允许以任何媒介或格式使用,共享,改编,分发和复制,只要您对原始作者和出处提供适当的信誉,即可提供链接到知识共享许可,并指出是否进行了更改。本文的图像或其他第三方材料包含在该文章的知识共享许可中,除非在该材料的信用额度中另有说明。如果该材料未包含在该文章的创用CC许可中,并且您的预期使用未得到法律法规的许可或超出了许可的使用范围,则您将需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。

转载和许可

通过CrossMark验证货币和真实性

引用本文

Muñoz,J.对以下内容的更正:广义Ponce不等式。Ĵ互不相申请 2021, 80(2021)。https://doi.org/10.1186/s13660-021-02609-8

下载引文

  • 发表时间

  • DOI https //doi.org/10.1186/s13660-021-02609-8

更新日期:2021-04-29
down
wechat
bug