当前位置: X-MOL 学术Adv. Model. and Simul. in Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compressible flow simulation with moving geometries using the Brinkman penalization in high-order Discontinuous Galerkin
Advanced Modeling and Simulation in Engineering Sciences Pub Date : 2021-04-27 , DOI: 10.1186/s40323-021-00195-4
Neda Ebrahimi Pour , Nikhil Anand , Harald Klimach , Sabine Roller

In this work we investigate the Brinkman volume penalization technique in the context of a high-order Discontinous Galerkin method to model moving wall boundaries for compressible fluid flow simulations. High-order approximations are especially of interest as they require few degrees of freedom to represent smooth solutions accurately. This reduced memory consumption is attractive on modern computing systems where the memory bandwidth is a limiting factor. Due to their low dissipation and dispersion they are also of particular interest for aeroacoustic problems. However, a major problem for the high-order discretization is the appropriate representation of wall geometries. In this work we look at the Brinkman penalization technique, which addresses this problem and allows the representation of geometries without modifying the computational mesh. The geometry is modelled as an artificial porous medium and embedded in the equations. As the mesh is independent of the geometry with this method, it is not only well suited for high-order discretizations but also for problems where the obstacles are moving. We look into the deployment of this strategy by briefly discussing the Brinkman penalization technique and its application in our solver and investigate its behavior in fundamental one-dimensional setups, such as shock reflection at a moving wall and the formation of a shock in front of a piston. This is followed by the application to setups with two and three dimensions, illustrating the method in the presence of curved surfaces.

中文翻译:

在高阶不连续Galerkin中使用Brinkman罚分的具有移动几何形状的可压缩流模拟

在这项工作中,我们在高阶不连续Galerkin方法的背景下研究了Brinkman体积罚分技术,以模拟可移动流体边界的可移动流体边界。高阶近似尤其令人感兴趣,因为它们需要很少的自由度才能准确表示平滑解。在存储器带宽是限制因素的现代计算系统上,这种减少的存储器消耗是有吸引力的。由于它们的低耗散性和分散性,它们还特别引起航空声学问题的关注。但是,高阶离散化的主要问题是壁几何形状的适当表示。在这项工作中,我们研究了Brinkman罚分技术,该技术解决了这个问题,并允许在不修改计算网格的情况下表示几何图形。将几何模型建模为人工多孔介质,并将其嵌入方程式中。由于该方法使网格独立于几何形状,因此它不仅非常适合于高阶离散化,而且也适合于障碍物移动的问题。通过简要讨论Brinkman罚分技术及其在求解器中的应用,我们研究了该策略的部署,并研究了其在基本一维设置中的行为,例如,运动壁处的震动反射以及在前方的震动形成。活塞。接下来是将其应用到具有二维和三维尺寸的设置中,从而说明存在曲面的方法。它不仅非常适合高阶离散化,而且还适合障碍物移动的问题。通过简要讨论Brinkman罚分技术及其在求解器中的应用,我们研究了此策略的部署,并研究了其在基本一维设置中的行为,例如,运动壁处的震动反射以及在前方的震动形成。活塞。接下来是将其应用到具有二维和三维尺寸的设置中,从而说明存在曲面的方法。它不仅非常适合高阶离散化,而且还适合障碍物移动的问题。通过简要讨论Brinkman罚分技术及其在求解器中的应用,我们研究了该策略的部署,并研究了其在基本一维设置中的行为,例如,运动壁处的震动反射以及在前方的震动形成。活塞。接下来是将其应用到具有二维和三维尺寸的设置中,从而说明存在曲面的方法。例如在活动壁上的震动反射以及在活塞前面的震动的形成。接下来是将其应用到具有二维和三维尺寸的设置中,从而说明存在曲面的方法。例如在活动壁上的震动反射以及在活塞前面的震动的形成。接下来是将其应用到具有二维和三维尺寸的设置中,从而说明存在曲面的方法。
更新日期:2021-04-27
down
wechat
bug