当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combined DFT and microkinetic modeling study of SO2 hydrodesulfurization reaction on Ni5P4 catalyst
Applied Surface Science ( IF 6.7 ) Pub Date : 2021-04-25 , DOI: 10.1016/j.apsusc.2021.149872
Omer Elmutasim , Muhammad Sajjad , Nirpendra Singh , Yasser AlWahedi , K. Polychronopoulou

Optimizing catalysts for the SO2 hydrodesulfurization (HDS) is a crucial step toward conforming with the environmental requirements concerning SO2 emissions. Nickel phosphides have been reported as efficient catalysts in HDS reaction. However, how HDS reaction proceeds on nickel phosphides is not well understood. On this context, the present work focuses on the mechanistic understanding of SO2 HDS reaction over Ni5P4surfaces. The adsorption of both reactants, SO2 and H2 molecules, on low-index facets of Ni5P4 crystal, namely (0 0 1), (0 1 1), (1 1 1), (1 1 0) , (1 0 1), (0 1 0) and (1 0 0) surfaces, were investigated using density functional theory (DFT) calculations. The stability of Ni5P4 surfaces was examined and (0 0 1) surface was found to be the most stable surface. Therefore, microkinetic modeling was conducted on Ni5P4(0 0 1) surface to predict the catalytic preferred pathways. Reaction towards H2S, main product, exhibited 100% selectivity at reaction temperatures below 700 K, however the selectivity towards H2O became dominant at higher temperatures. This is because the barrier for HS- hydrogenation to H2S (1.20 eV) is lower than that of the OH hydrogenation to H2O (2.37 eV). The model revealed that conversion of HS- ions to H2S was the rate-controlling step at reaction temperature below 500 K, whereas H2S desorption dominates the overall reaction rate at higher temperatures. The apparent activation energy of HDS reaction decreased considerably from 195 to 48 kJ/mol at reaction temperature range of 400–800 K. The reaction orders in SO2 and H2 increased with rising temperature, reaching 0.15 and 1.0, respectively, at 800 K.



中文翻译:

DFT与微动力学模型相结合的研究 小号Ø2个 加氢脱硫反应 ñ一世5P4 催化剂

优化催化剂 小号Ø2个 加氢脱硫(HDS)是符合有关环境要求的关键步骤 小号Ø2个排放。据报导,磷化镍是HDS反应的有效催化剂。然而,HDS反应如何在磷化镍上进行还不是很清楚。在这种情况下,本工作着重于对机械的理解。小号Ø2个 HDS反应过度 ñ一世5P4表面。两种反应物的吸附小号Ø2个H2个 分子,在低折射率方面 ñ一世5P4使用密度研究晶体(0  0  1),(0  1  1),(1  1  1),(1  1  0),(1  0  1),(0  1  0)和(1  0  0)表面功能理论(DFT)计算。的稳定性ñ一世5P4检查了表面,发现(0  0  1)表面是最稳定的表面。因此,进行了微动力学建模。ñ一世5P4(0  0  1)表面可预测催化的优选途径。对...的反应H2个小号,主要产品,在低于700 K的反应温度下表现出100%的选择性,但是对 H2个Ø在较高温度下变得占主导地位。这是因为HS的障碍-加氢至H2个小号 (1.20 eV)低于OH加氢至 H2个Ø(2.37 eV)。该模型揭示HS的是转换-离子H2个小号 是反应温度低于500 K时的速率控制步骤,而 H2个小号在较高的温度下,解吸控制了总反应速率。在400-800 K的反应温度范围内,HDS反应的表观活化能从195降低至48 kJ / mol。小号Ø2个H2个 随着温度的升高而增加,在800 K时分别达到0.15和1.0。

更新日期:2021-05-07
down
wechat
bug