当前位置: X-MOL 学术Plasma Phys. Control. Fusion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On a fusion chain reaction via suprathermal ions in high-density H–11B plasma
Plasma Physics and Controlled Fusion ( IF 2.2 ) Pub Date : 2021-04-20 , DOI: 10.1088/1361-6587/abf255
Fabio Belloni

The 11B(p,3α) fusion reaction is particularly attractive for energy production purposes because of its aneutronic character and the absence of radioactive species among reactants and products. Its exploitation in the thermonuclear regime, however, appears to be prohibitive due to the low reactivity of the H–11B fuel at temperatures up to 100 keV. A fusion chain sustained by elastic collisions between the α particles and fuel ions, this way scattered to suprathermal energies, has been proposed as a possible route to overcome this limitation. Based on a simple model, this work investigates the reproduction process in an infinite, non-degenerate H–11B plasma, in a wide range of densities and temperatures which are of interest for laser-driven experiments (${10^{24}} \lesssim {n_{\text{e}}} \lesssim {10^{28}}{\text{ c}}{{\text{m}}^{ - 3}}$, ${T_{\text{e}}} \lesssim 100{\text{ keV}}$, ${T_{\text{i}}}\sim1{\text{ keV}}$). In particular, cross section data for the α–p scattering which include the nuclear interaction have been used. The multiplication factor, ${k_\infty }$, increases markedly with electron temperature and less significantly with plasma density. However, even at the highest temperature and density considered, and despite a more than twofold increase by the inclusion of the nuclear scattering, ${k_\infty }$ turns out to be of the order of 10−2 only. In general, values of ${k_\infty }$ very close to 1 are needed in a confined scheme to enhance the suprathermal-to-thermonuclear energy yield by factors of up to 103 or 104.



中文翻译:

在高密度 H-11B 等离子体中通过超热离子的聚变链反应

11 B(P,3 α)聚变反应是因为其aneutronic字符的能源生产的目的以及没有反应物和产物之间的放射性物质的特别有吸引力的。然而,由于 H- 11 B 燃料在高达 100 keV 的温度下的低反应性,它在热核体系中的开发似乎令人望而却步。由α粒子和燃料离子之间的弹性碰撞维持的融合链,以这种方式散射到超热能,已被提议作为克服这一限制的可能途径。基于一个简单的模型,这项工作研究了无限、非退化 H- 11 中的繁殖过程。B 等离子体,在很宽的密度和温度范围内是激光驱动实验感兴趣的 ( ${10^{24}} \lesssim {n_{\text{e}}} \lesssim {10^{28}}{\text{ c}}{{\text{m}}^{ - 3}} $, ${T_{\text{e}}} \lesssim 100{\text{ keV}}$, ${T_{\text{i}}}\sim1{\text{ keV}}$)。特别是,已经使用了包含核相互作用的α -p 散射的横截面数据。倍增因子${k_\infty }$随电子温度显着增加,而随等离子体密度增加不显着。然而,即使在所考虑的最高温度和密度下,尽管由于包含核散射而增加了两倍以上,但${k_\infty }$结果证明仅为10 -2的数量级。一般来说,${k_\infty }$在有限的方案中需要非常接近 1 的值,以将超热能到热核的能量产量提高多达 10 3或 10 4

更新日期:2021-04-20
down
wechat
bug