当前位置: X-MOL 学术Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Effect of Climatic Factors on the Electric Load of Thermal Power Plants (TPP) in the Southern Federal District by the Example of the Novocherkassk District Power Plant (GRES)
Thermal Engineering Pub Date : 2021-04-23 , DOI: 10.1134/s0040601521030034
N. V. Fedorova

Abstract

A statistical analysis was performed of the electrical load curve according to which the Novocherkassk District Power Plant (NсhGRES) operated in the period between 2009 and 2018. The effect of weather and climatic factors, such as daylight time, ambient air temperature, and wind strength, on the electrical load was examined. Climatic components of the NсhGRES electric load were estimated, and it has been demonstrated that the additional lighting load depending on the daylight time in Rostov oblast was as great as 35.4%, the seasonal heating load was up to 11.3%, and the seasonal cooling load was up to 20.2% of the normal baseload. It is shown that the basic heating load in Rostov oblast is carried by centralized and individual heat supply systems, and electric heating appliances are activated when the centralized heat supply systems cannot cover the heating load due to poor maneuverability. The heating component of the electric load depends not only on the ambient air temperature but also on the wind velocity. A formula was derived using the fuzzy logic technique for calculating heat consumption in a heating system depending on ambient air temperature and wind speed. It is noted that high wind speed aggravates the negative temperature factor, bringing about the need to turn on additional heating appliances and, thereby, increasing the electrical load. A fundamental change in the shape of the annual electric load curve within the studied period was revealed: the appearance of the summer maximum load whose amplitude in terms of the indicators approached the winter one and even exceeded it in certain years, which can be attributed to the climate change in the region of the power plant site and the advent of a new type of electrical equipment, i.e., climatic control cooling units. The maximum monthly power consumption of cooling units is 1.8 times the maximum monthly power consumption of heating units and 1.7 times less than the maximum additional monthly power consumption of lighting facilities. The maximum power consumption for each type of equipment occurs in different months of the year. This change is a stable trend that should be considered, in particular, in scheduling maintenance activities at the power plant.



中文翻译:

气候因素对南部联邦区火力发电厂(TPP)电力负荷的影响-以Novocherkassk地区发电厂(GRES)为例

摘要

对Novocherkassk地区电厂(NсhGRES)在2009年至2018年期间运行的电力负荷曲线进行了统计分析。天气和气候因素的影响,例如日光时间,环境空气温度和风强度,对电气负载进行了检查。估算了NсhGRES电力负荷的气候成分,并且已经证明,根据罗斯托夫州的日光时间,额外的照明负荷高达35.4%,季节性供暖负荷高达11.3%,季节性制冷负荷高达正常基本负载的20.2%。结果表明,罗斯托夫州的基本供热负荷是由集中供热系统和独立供热系统承担的,当集中供热系统由于可操作性差而无法覆盖供热负荷时,将激活电加热设备。电负载的加热成分不仅取决于环境空气温度,而且取决于风速。使用模糊逻辑技术得出了一个公式,用于根据环境空气温度和风速来计算加热系统中的热量消耗。要注意的是,高风速加剧了负温度系数,导致需要打开额外的加热设备,从而增加了电负荷。在研究期内,年度电力负荷曲线的形状发生了根本变化:夏季最大负荷的出现,其指标的幅度接近冬季,甚至在某些年份甚至超过了冬季,这可以归因于发电厂所在地区域的气候变化和一种新型的最大负荷的出现。电气设备,即气候控制冷却装置。制冷设备的每月最大功耗是供暖设备的每月最大功耗的1.8倍,比照明设施的最大每月额外功耗的1.7倍小。每种类型的设备的最大功耗发生在一年的不同月份。这种变化是一个稳定的趋势,尤其是在安排电厂的维护活动时应考虑到这一趋势。这可以归因于发电厂所在地区域的气候变化以及新型电气设备(即气候控制冷却装置)的出现。冷却装置的最大每月功耗是加热装置的最大每月功耗的1.8倍,比照明设施的最大附加每月功耗的1.7倍小。每种类型的设备的最大功耗发生在一年的不同月份。这种变化是一个稳定的趋势,尤其是在安排电厂的维护活动时应考虑到这一趋势。这可以归因于发电厂所在地区域的气候变化以及新型电气设备(即气候控制冷却装置)的出现。制冷设备的每月最大功耗是供暖设备的每月最大功耗的1.8倍,比照明设施的最大每月额外功耗的1.7倍小。每种类型的设备的最大功耗发生在一年的不同月份。这种变化是一个稳定的趋势,尤其是在安排电厂的维护活动时应考虑到这一趋势。比照明设施的每月最大额外耗电量少​​7倍。每种类型的设备的最大功耗发生在一年的不同月份。这种变化是一个稳定的趋势,尤其是在安排电厂的维护活动时应考虑到这一趋势。比照明设施的每月最大额外耗电量少​​7倍。每种类型的设备的最大功耗发生在一年的不同月份。这种变化是一个稳定的趋势,尤其是在安排电厂的维护活动时应考虑到这一趋势。

更新日期:2021-04-24
down
wechat
bug