当前位置: X-MOL 学术Geoderma › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling soil chemical changes induced by grassland afforestation in a sedimentary plain with shallow groundwater
Geoderma ( IF 6.1 ) Pub Date : 2021-04-24 , DOI: 10.1016/j.geoderma.2021.115158
Claudio R. Mujica , Sergio A. Bea , Esteban G. Jobbágy

Chemical changes produced by the establishment of tree plantations on grasslands occupying sedimentary plains could potentially impact their highly productive soils through multiple mechanisms. Some of the reported chemical changes following this vegetation shift include soil salinization, sodification, alkalization and acidification. While the associated hydrological, chemical and biological processes have been characterized in most cases, their quantitative integration remains as a complex challenge. The present work explored the simultaneous occurrence of the four mentioned soil chemical changes using reactive transport modeling and hydrological and chemical datasets (water, soil and plants) for a well described afforested grassland in the Pampas of Argentina. Processes included in the numerical model were unsaturated water flow, chemical reactions (soil cation exchange, mineral dissolution-precipitation), the intrusion of salty deep water induced by tree groundwater consumption, rhizosphere-plant processes (respiration, selective solute uptake/exclusion, root mediated electric charge compensation, and elemental recycling and uplift). Modeling results suggest that the dominant soil chemical changes depend on the interplay of all the aforementioned processes and help explain strong soil variation across very short distances (250 m) along edge-core gradients within the tree plantation. This complexity is hard to expect and explain from an isolated treatment of each of the aforementioned processes, calling for the application of numerical tools.



中文翻译:

模拟浅水沉积平原草地绿化引起的土壤化学变化

在占据沉积平原的草原上建立人工林所产生的化学变化,可能通过多种机制影响其高产土壤。随着植被的转移,一些已报告的化学变化包括土壤盐渍化,碱化,碱化和酸化。尽管在大多数情况下已对相关的水文,化学和生物过程进行了描述,但它们的定量整合仍然是一个复杂的挑战。目前的工作使用反应运输模型和水文和化学数据集(水,土壤和植物)探索了阿根廷潘帕斯地区一个被充分描述的绿化草地同时发生的四种土壤化学变化。数值模型中包含的过程是不饱和水流,化学反应(土壤阳离子交换,矿物质溶解-沉淀),树木地下水的消耗引起的咸深水入侵,根际-植物过程(呼吸作用,选择性溶质的吸收/排斥,根介导的电荷补偿以及元素循环和上升) 。建模结果表明,主要的土壤化学变化取决于所有上述过程的相互作用,并有助于解释沿人工林边缘边缘梯度在非常短的距离(250 m)内土壤的强烈变化。从上述每个过程的孤立处理中很难期望和解释这种复杂性,因此需要使用数值工具。树木地下水的消耗,根际-植物过程(呼吸作用,选择性溶质的吸收/排斥,根介导的电荷补偿以及元素的循环利用和上升)引起的咸深水入侵。建模结果表明,主要的土壤化学变化取决于所有上述过程的相互作用,并有助于解释沿人工林边缘边缘梯度在非常短的距离(250 m)内土壤的强烈变化。从上述每个过程的孤立处理中很难期望和解释这种复杂性,因此需要使用数值工具。树木地下水的消耗,根际-植物过程(呼吸作用,选择性溶质的吸收/排斥,根介导的电荷补偿以及元素的循环利用和上升作用)引起的咸深水入侵。建模结果表明,主要的土壤化学变化取决于所有上述过程的相互作用,并有助于解释沿人工林边缘边缘梯度在非常短的距离(250 m)内土壤的强烈变化。从上述每个过程的孤立处理中很难期望和解释这种复杂性,因此需要使用数值工具。建模结果表明,主要的土壤化学变化取决于所有上述过程的相互作用,并有助于解释沿人工林边缘边缘梯度在非常短的距离(250 m)内土壤的强烈变化。从上述每个过程的孤立处理中很难期望和解释这种复杂性,因此需要使用数值工具。建模结果表明,主要的土壤化学变化取决于所有上述过程的相互作用,并有助于解释沿人工林边缘边缘梯度在非常短的距离(250 m)内土壤的强烈变化。从上述每个过程的孤立处理中很难期望和解释这种复杂性,因此需要使用数值工具。

更新日期:2021-04-24
down
wechat
bug