当前位置: X-MOL 学术J. Ind. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Whole‐life embodied carbon in multistory buildings: Steel, concrete and timber structures
Journal of Industrial Ecology ( IF 5.9 ) Pub Date : 2021-04-22 , DOI: 10.1111/jiec.13139
Jim Hart 1 , Bernardino D'Amico 1 , Francesco Pomponi 1
Affiliation  

Buildings and the construction industry are top contributors to climate change, and structures account for the largest share of the upfront greenhouse gas emissions. While a body of research exists into such emissions, a systematic comparison of multiple building structures in steel, concrete, and timber alternatives is missing. In this article, comparisons are made between mass and whole‐life embodied carbon (WLEC) emissions of building superstructures using identical frame configurations in steel, reinforced concrete, and engineered timber frames. These are assessed and compared for 127 different frame configurations, from 2 to 19 stories. Embodied carbon coefficients for each material and life cycle stage are represented by probability density functions to capture the uncertainty inherent in life cycle assessment. Normalized results show clear differences between the masses of the three structural typologies, with the concrete frame approximately five times the mass of the timber frame, and 50% higher than the steel frame. The WLEC emissions are mainly governed by the upfront emissions (cradle to practical completion), but subsequent emissions are still significant—particularly in the case of timber for which 36% of emissions, on average, occur post‐construction. Results for WLEC are more closely grouped than for masses, with median values for the timber frame, concrete frame, and steel frame of 119, 185, and 228 kgCO2e/m2, respectively. Despite the advantage for timber in this comparison, there is overlap between the results distributions, meaning that close attention to efficient design and procurement is essential. This article met the requirements for a gold–gold JIE data openness badge described in http://jie.click/badges.

中文翻译:

多层建筑中的全生命体现碳:钢,混凝土和木材结构

建筑物和建筑业是气候变化的主要贡献者,建筑物在前期温室气体排放量中所占比例最大。尽管对此类排放物已有大量研究,但仍缺乏对钢,混凝土和木材替代品中多种建筑结构的系统比较。在本文中,使用钢,钢筋混凝土和工程木框架中相同的框架配置,对建筑上部结构的质量和全寿命体现的碳(WLEC)排放量进行了比较。对这些属性进行了评估,并针对2到19层的127种不同框架配置进行了比较。每个材料和生命周期阶段的具体碳系数由概率密度函数表示,以捕获生命周期评估中固有的不确定性。归一化结果表明,三种结构类型的质量之间存在明显差异,混凝土框架的质量约为木框架质量的五倍,比钢框架高50%。WLEC排放主要由前期排放控制(从摇篮到实际竣工),但后续排放仍然很大-特别是对于木材,平均排放量的36%发生在施工后。WLEC的结果比质量更紧密地分组,木框架,混凝土框架和钢框架的中值分别为119、185和228 kgCO WLEC排放主要由前期排放控制(从摇篮到实际竣工),但后续排放仍然很大-特别是对于木材,平均排放量的36%发生在施工后。WLEC的结果比质量更紧密地分组,木框架,混凝土框架和钢框架的中值分别为119、185和228 kgCO WLEC排放主要由前期排放控制(从摇篮到实际竣工),但后续排放仍然很大-特别是对于木材,平均排放量的36%发生在施工后。WLEC的结果比质量更紧密地分组,木框架,混凝土框架和钢框架的中值分别为119、185和228 kgCO2 e / m 2。尽管木材在此比较中具有优势,但结果分布之间存在重叠,这意味着必须密切注意有效的设计和采购。本文符合http://jie.click/badges中所述的金JIE数据开放性徽章的要求。
更新日期:2021-04-23
down
wechat
bug